
ROS Toolbox
User's Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

ROS Toolbox User's Guide
© COPYRIGHT 2019–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2019 Online only New for Version 1.0 (R2019b)
March 2020 Online only Revised for Version 1.1 (R2020a)
September 2020 Online only Revised for Version 1.2 (R2020b)
March 2021 Online only Revised for Version 1.3 (R2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

ROS Featured Examples
1

Get Started with ROS . 1-2

Connect to a ROS Network . 1-7

Access the ROS Parameter Server . 1-12

Work with Basic ROS Messages . 1-15

Exchange Data with ROS Publishers and Subscribers 1-25

Improve Performance of ROS Using Message Structures 1-31

Call and Provide ROS Services . 1-40

Work with rosbag Logfiles . 1-45

Access the tf Transformation Tree in ROS . 1-51

Work with Specialized ROS Messages . 1-58

Work with Velodyne ROS Messages . 1-67

Get Started with a Real TurtleBot . 1-70

Get Started with ROS in Simulink® . 1-78

Work with ROS Messages in Simulink® . 1-87

Connect to a ROS-enabled Robot from Simulink® 1-94

Feedback Control of a ROS-Enabled Robot . 1-102

Fusion of Radar and Lidar Data Using ROS . 1-105

MATLAB Programming for Code Generation . 1-111

Generate a Standalone ROS Node from MATLAB® 1-116

Generate a Standalone ROS Node from Simulink® 1-120

Get Started with Gazebo and a Simulated TurtleBot 1-129

Add, Build, and Remove Objects in Gazebo . 1-135

iii

Contents

Apply Forces and Torques in Gazebo . 1-142

Test Robot Autonomy in Simulation . 1-152

Communicate with the TurtleBot . 1-157

Explore Basic Behavior of the TurtleBot . 1-162

Control the TurtleBot with Teleoperation . 1-168

Obstacle Avoidance with TurtleBot and VFH . 1-173

Track and Follow an Object . 1-175

ROS 2 Featured Examples
2

Get Started with ROS 2 . 2-2

Connect to a ROS 2 Network . 2-6

Work with Basic ROS 2 Messages . 2-11

Exchange Data with ROS 2 Publishers and Subscribers 2-17

Manage Quality of Service Policies in ROS 2 . 2-21

Manage Quality of Service Policies in ROS 2 Application with TurtleBot
. 2-29

ROS 2 Custom Message Support . 2-39

Using ROS Bridge to Establish Communication Between ROS and ROS 2
. 2-41

Get Started with ROS 2 in Simulink® . 2-48

Connect to a ROS-Enabled Robot from Simulink® over ROS 2 2-56

Feedback Control of a ROS-Enabled Robot Over ROS 2 2-61

Publish and Subscribe to ROS 2 Messages in Simulink 2-65

Generate a Standalone ROS 2 Node from Simulink® 2-67

Generate Code to Manually Deploy a ROS 2 Node from Simulink® 2-69

Sign Following Robot with ROS in MATLAB . 2-73

Sign Following Robot with ROS in Simulink . 2-78

iv Contents

Sign Following Robot with ROS 2 in MATLAB . 2-80

Sign Following Robot with ROS 2 in Simulink . 2-85

Automated Parking Valet with ROS in MATLAB . 2-87

Automated Parking Valet with ROS in Simulink . 2-99

Automated Parking Valet with ROS 2 in MATLAB 2-107

Automated Parking Valet with ROS 2 in Simulink 2-118

ROS Topics
3

ROS Network Setup . 3-2
Introduction . 3-2
Network Connection Layout . 3-2

Built-In Message Support . 3-4
ROS Message Structure . 3-4
Limitations of ROS Messages in MATLAB . 3-5
ROS Data Type Conversions . 3-5
Supported Messages . 3-6

Transform Laser Scan Data From A ROS Network 3-11

ROS Log Files (rosbags) . 3-13
Introduction . 3-13
MATLAB rosbag Structure . 3-13
Workflow for rosbag Selection . 3-14
Limitations . 3-16

Publish Variable-Length Nested ROS Messages in MATLAB 3-17

ROS Custom Message Support . 3-24
Custom Message Overview . 3-24
Custom Message Contents . 3-24
Custom Message Creation Workflow . 3-25

Create Custom Messages from ROS Package . 3-27

ROS Actions Overview . 3-30
Client to Server Relationship . 3-30
Performing Actions Workflow . 3-30
Action Messages and Functions . 3-32

Move a Turtlebot Robot Using ROS Actions . 3-33

Execute Code Based on ROS Time . 3-35
Send Fixed-rate Control Commands To A Robot 3-35

v

Fixed-rate Publishing of ROS Image Data . 3-36

ROS Simulink Topics
4

ROS Simulink Support and Limitations . 4-2
ROS Model Reference . 4-2
Remote Desktop . 4-2
ROS 2 Model Build Failure . 4-2

ROS Simulink Interaction . 4-4
MATLAB ROS Information . 4-4
Simulink ROS Node . 4-4
Differences Between Simulation and Generated Code 4-4
Publishers and Subscribers in Simulink . 4-5
ROS Model Reference . 4-5

Publish and Subscribe to ROS Messages in Simulink 4-6

Update Header Field of a ROS Message in Simulink® 4-8

Time Stamp a ROS Message Using Current Time in Simulink 4-11

ROS Parameters in Simulink . 4-12
Get and Set ROS Parameters . 4-12
Set String Parameter on ROS Network . 4-13
Compare ROS String Parameters . 4-14
Check Image Encoding Parameter for ROS Image Message 4-15

Play Back Data from Jackal rosbag Logfile in Simulink 4-17

Call ROS Service in Simulink . 4-19

Configure ROS Network Addresses . 4-21

Select ROS Topics, Messages, and Parameters . 4-24
Select ROS Topics . 4-24
Select ROS Message Types . 4-25
Select ROS Parameter Names . 4-25

Manage Array Sizes for ROS Messages in Simulink 4-27

Generate Code to Manually Deploy a ROS Node from Simulink 4-29
Prerequisites . 4-29
Configure A Model for Code Generation . 4-29
Configure the Build Options for Code Generation 4-30
Generate and Deploy the Code . 4-30

Tune Parameters and View Signals on Deployed Robot Models Using
External Mode . 4-33

Set Up the Simulink Model . 4-33
Deploy and Run the Model . 4-33

vi Contents

Monitor Signals and Tune Parameters . 4-34

Connect to ROS Device . 4-36

Enable ROS Time Model Stepping for Deployed ROS Nodes 4-37

Enable External Mode for ROS Toolbox Models . 4-38

Overrun Detection with Deployed ROS Nodes . 4-39

Convert a ROS Pose Message to a Homogeneous Transformation 4-40

Read A ROS Point Cloud Message In Simulink® 4-42

Read A ROS Image Message In Simulink® . 4-46

vii

ROS Featured Examples

• “Get Started with ROS” on page 1-2
• “Connect to a ROS Network” on page 1-7
• “Access the ROS Parameter Server” on page 1-12
• “Work with Basic ROS Messages” on page 1-15
• “Exchange Data with ROS Publishers and Subscribers” on page 1-25
• “Improve Performance of ROS Using Message Structures” on page 1-31
• “Call and Provide ROS Services” on page 1-40
• “Work with rosbag Logfiles” on page 1-45
• “Access the tf Transformation Tree in ROS” on page 1-51
• “Work with Specialized ROS Messages” on page 1-58
• “Work with Velodyne ROS Messages” on page 1-67
• “Get Started with a Real TurtleBot” on page 1-70
• “Get Started with ROS in Simulink®” on page 1-78
• “Work with ROS Messages in Simulink®” on page 1-87
• “Connect to a ROS-enabled Robot from Simulink®” on page 1-94
• “Feedback Control of a ROS-Enabled Robot” on page 1-102
• “Fusion of Radar and Lidar Data Using ROS” on page 1-105
• “MATLAB Programming for Code Generation” on page 1-111
• “Generate a Standalone ROS Node from MATLAB®” on page 1-116
• “Generate a Standalone ROS Node from Simulink®” on page 1-120
• “Get Started with Gazebo and a Simulated TurtleBot” on page 1-129
• “Add, Build, and Remove Objects in Gazebo” on page 1-135
• “Apply Forces and Torques in Gazebo” on page 1-142
• “Test Robot Autonomy in Simulation” on page 1-152
• “Communicate with the TurtleBot” on page 1-157
• “Explore Basic Behavior of the TurtleBot” on page 1-162
• “Control the TurtleBot with Teleoperation” on page 1-168
• “Obstacle Avoidance with TurtleBot and VFH” on page 1-173
• “Track and Follow an Object” on page 1-175

1

Get Started with ROS
Robot Operating System (ROS) is a communication interface that enables different parts of a robot
system to discover each other, and send and receive data between them. MATLAB® supports ROS
with a library of functions that enables you to exchange data with ROS-enabled physical robots or
robot simulators such as Gazebo®.

This example introduces how to:

• Set up ROS within MATLAB
• Get information about capabilities in a ROS network
• Get information about ROS messages

ROS Terminology

• A ROS network comprises different parts of a robot system (such as a planner or a camera
interface) that communicate over ROS. The network can be distributed over several machines.

• A ROS master coordinates the different parts of a ROS network. It is identified by a Master URI
(Uniform Resource Identifier) that specifies the hostname or IP address of the machine where the
master is running.

• A ROS node contains a collection of related ROS capabilities (such as publishers, subscribers, and
services). A ROS network can have many ROS nodes.

• Publishers, subscribers, and services are different kinds of ROS entities that process data. They
exchange data using messages.

• A publisher sends messages to a specific topic (such as "odometry"), and subscribers to that topic
receive those messages. A single topic can be associated with multiple publishers and subscribers.

For more information, see “Robot Operating System (ROS)” and the Concepts section on the ROS
website.

Initialize ROS Network

Use rosinit to initialize ROS. By default, rosinit creates a ROS master in MATLAB and starts a
global node that is connected to the master. The global node is automatically used by other ROS
functions.

rosinit

Launching ROS Core...
..Done in 2.1882 seconds.
Initializing ROS master on http://172.30.196.185:55209.
Initializing global node /matlab_global_node_91202 with NodeURI http://bat5125win64:55758/

Use rosnode list to see all nodes in the ROS network. Note that the only available node is the
global node created by rosinit.

rosnode list

/matlab_global_node_91202

Use exampleHelperROSCreateSampleNetwork to populate the ROS network with three additional
nodes and sample publishers and subscribers.

exampleHelperROSCreateSampleNetwork

1 ROS Featured Examples

1-2

https://wiki.ros.org/ROS/Concepts

Use rosnode list again to see the three new nodes (node_1, node_2, and node_3).

rosnode list

/matlab_global_node_91202
/node_1
/node_2
/node_3

The figure shows the current state of the ROS network. The MATLAB global node is disconnected
since it currently does not have any publishers, subscribers or services.

Topics

Use rostopic list to see available topics in the ROS network. There are four active topics: /
pose, /rosout, /scan and /tf. The default topics: rosout and tf are always present in the ROS
network. The other two topics were created as part of the sample network.

rostopic list

/pose
/rosout
/scan
/tf

Use rostopic info <topicname> to get specific information about a specific topic. The command
below shows that /node_1 publishes (sends messages to) the /pose topic, and /node_2 subscribes
(receives messages from) to that topic. See “Exchange Data with ROS Publishers and Subscribers” on
page 1-25 for more information.

 Get Started with ROS

1-3

rostopic info /pose

Type: geometry_msgs/Twist

Publishers:
* /node_1 (http://bat5125win64:55767/)

Subscribers:
* /node_2 (http://bat5125win64:55773/)

Use rosnode info <nodename> to get information about a specific node. The command below
shows that node_1 publishes to /pose, /rosout and /tf topics, subscribes to the /scan topic and
provides services: /node_1/get_loggers and /node_1/set_logger_level. The default logging services:
get_loggers and set_logger_level are provided by all the nodes created in ROS network.

rosnode info /node_1

Node: [/node_1]
URI: [http://bat5125win64:55767/]

Publications (3 Active Topics):
 * /pose
 * /rosout
 * /tf

Subscriptions (1 Active Topics):
 * /scan

Services (2 Active):
 * /node_1/get_loggers
 * /node_1/set_logger_level

Services

ROS services provide a mechanism for procedure calls across the ROS network. A service client
sends a request message to a service server, which processes the information in the request and
returns with a response message (see “Call and Provide ROS Services” on page 1-40).

Use rosservice list to see all available service servers in the ROS network. The command below
shows that two services (/add and /reply) are available along with the default logger services of all
the nodes.

rosservice list

/add
/matlab_global_node_91202/get_loggers
/matlab_global_node_91202/set_logger_level
/node_1/get_loggers
/node_1/set_logger_level
/node_2/get_loggers
/node_2/set_logger_level
/node_3/get_loggers
/node_3/set_logger_level
/reply

Use rosservice info <servicename> to get information about a specific service.

rosservice info /add

1 ROS Featured Examples

1-4

Node: /node_3
URI: rosrpc://bat5125win64:55781
Type: roscpp_tutorials/TwoInts
Args: MessageType A B

Messages

Publishers, subscribers, and services use ROS messages to exchange information. Each ROS message
has an associated message type that defines the datatypes and layout of information in that message
(See “Work with Basic ROS Messages” on page 1-15).

Use rostopic type <topicname> to see the message type used by a topic. The command below
shows that the /pose topic uses messages of type geometry_msgs/Twist.

rostopic type /pose

geometry_msgs/Twist

Use rosmsg show <messagetype> to view the properties of a message type. The
geometry_msgs/Twist message type has two properties, Linear and Angular. Each property is a
message of type geometry_msgs/Vector3, which in turn has three properties of type double.

rosmsg show geometry_msgs/Twist

% This expresses velocity in free space broken into its Linear and Angular parts.
Vector3 Linear
Vector3 Angular

rosmsg show geometry_msgs/Vector3

% This represents a vector in free space.
% It is only meant to represent a direction. Therefore, it does not
% make sense to apply a translation to it (e.g., when applying a
% generic rigid transformation to a Vector3, tf2 will only apply the
% rotation). If you want your data to be translatable too, use the
% geometry_msgs/Point message instead.

double X
double Y
double Z

Use rosmsg list to see the full list of message types available in MATLAB.

Shut Down ROS Network

Use exampleHelperROSShutDownSampleNetwork to remove the sample nodes, publishers, and
subscribers from the ROS network. This command is only needed if the sample network was created
earlier using exampleHelperROSStartSampleNetwork.

exampleHelperROSShutDownSampleNetwork

Use rosshutdown to shut down the ROS network in MATLAB. This shuts down the ROS master that
was started by rosinit and deletes the global node. Using rosshutdown is the recommended
procedure once you are done working with the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_91202 with NodeURI http://bat5125win64:55758/
Shutting down ROS master on http://172.30.196.185:55209.

 Get Started with ROS

1-5

Next Steps

• “Connect to a ROS Network” on page 1-7

1 ROS Featured Examples

1-6

Connect to a ROS Network
A ROS network consists of a single ROS master and multiple ROS nodes. The ROS master facilitates
the communication in the ROS network by keeping track of all active ROS entities. Every node needs
to register with the ROS master to be able to communicate with the rest of the network. MATLAB®
can start the ROS master, or the master can be launched outside of MATLAB (for example, on a
different computer).

When you work with ROS, you typically follow these steps:

1 Connect to a ROS network. To connect to a ROS network, you can create the ROS master in
MATLAB or connect to an existing ROS master. In both cases, MATLAB will also create and
register its own ROS node (called the MATLAB global node) with the master. The rosinit
function manages this process.

2 Exchange data. Once connected, MATLAB exchanges data with other ROS nodes through
publishers, subscribers, and services.

3 Disconnect from the ROS network. Call the rosshutdown function to disconnect MATLAB from
the ROS network.

This example shows you how to:

• Create a ROS master in MATLAB
• Connect to an external ROS master

Prerequisites: “Get Started with ROS” on page 1-2

Create a ROS Master in MATLAB

• To create the ROS master in MATLAB, call rosinit without any arguments. This function also
creates the global node, which MATLAB uses to communicate with other nodes in the ROS
network.

rosinit

Launching ROS Core...
..Done in 2.1642 seconds.
Initializing ROS master on http://172.30.196.185:58578.
Initializing global node /matlab_global_node_25458 with NodeURI http://bat5125win64:52534/

ROS nodes that are external to MATLAB can now join the ROS network. They can connect to the ROS
master in MATLAB by using the hostname or IP address of the MATLAB host computer.

You can shut down the ROS master and the global node by calling rosshutdown.

rosshutdown

Shutting down global node /matlab_global_node_25458 with NodeURI http://bat5125win64:52534/
Shutting down ROS master on http://172.30.196.185:58578.

Connect to an External ROS Master

You can also use the rosinit command to connect to an external ROS master (for example running
on a robot or a virtual machine). You can specify the address of the master in two ways: by an IP
address or by hostname of the computer that runs the master.

 Connect to a ROS Network

1-7

After each call to rosinit, you have to call rosshutdown before calling rosinit with a different
syntax. For brevity, these calls to rosshutdown are omitted in these examples.

'master_host' is an example host name and '192.168.1.1' is an example IP address of the
external ROS master. Adjust these addresses depending on where the external master resides in your
network. These commands will fail if no master is found at the specified addresses.

rosinit('192.168.1.1')
rosinit('master_host')

Both calls to rosinit assume that the master accepts network connections on port 11311, which is
the standard ROS master port. If the master is running on a different port, you can specify it as a
second argument. To connect to a ROS master running on host name master_host and port 12000,
use the following command:

rosinit('master_host',12000)

If you know the entire Uniform Resource Identifier (URI) of the master, you can create the global
node and connect to this master using this syntax:

rosinit('http://192.168.1.1:12000')

Node Host Specification

In some cases, your computer may be connected to multiple networks and have multiple IP
addresses. This illustration shows an example.

1 ROS Featured Examples

1-8

The computer on the bottom left runs MATLAB and is connected to two different networks. In one
subnet, its IP address is 73.195.120.50, and in the other, its IP is 192.168.1.100. This computer
wants to connect to the ROS master on the TurtleBot® computer at IP address 192.168.1.1. As
part of the registration with the master, the MATLAB global node has to specify the IP address or host
name where other ROS nodes can reach it. All the nodes on the TurtleBot will use this address to
send data to the global node in MATLAB.

When rosinit is invoked with the master's IP address, it tries to detect the network interface used
to contact the master and use that as the IP address for the global node. If this automatic detection
fails, you can explicitly specify the IP address or host name by using the NodeHost name-value pair
in the rosinit call. The NodeHost name-value pair can be used with any of the other syntaxes
already shown.

These commands advertise your computer's IP address to the ROS network as 192.168.1.100.

rosinit('192.168.1.1','NodeHost','192.168.1.100')
rosinit('http://192.168.1.1:11311','NodeHost','192.168.1.100')
rosinit('master_host','NodeHost','192.168.1.100')

Once a node is registered in the ROS network, you can see the address that it advertises by using the
command rosnode info <nodename>. You can see the names of all registered nodes by calling
rosnode list.

 Connect to a ROS Network

1-9

ROS Environment Variables

In advanced use cases, you might want to specify the address of a ROS master and your advertised
node address through standard ROS environment variables. The syntaxes that were explained in the
previous sections should be sufficient for the majority of your use cases.

If no arguments are provided to rosinit, the function will also check the values of standard ROS
environment variables. These variables are ROS_MASTER_URI, ROS_HOSTNAME, and ROS_IP. You can
see their current values using the getenv command:

getenv('ROS_MASTER_URI')
getenv('ROS_HOSTNAME')
getenv('ROS_IP')

You can set these variables using the setenv command. After setting the environment variables, call
rosinit with no arguments. The address of the ROS master is specified by ROS_MASTER_URI, and
the global node's advertised address is given by ROS_IP or ROS_HOSTNAME. If you specify additional
arguments to rosinit, they override the values in the environment variables.

setenv('ROS_MASTER_URI','http://192.168.1.1:11311')
setenv('ROS_IP','192.168.1.100')
rosinit

You do not have to set both ROS_HOSTNAME and ROS_IP. If both are set, ROS_HOSTNAME takes
precedence.

Verify Connection

For your ROS connection to work correctly, you must ensure that all nodes can communicate with the
master and with each other. The individual nodes must communicate with the master to register
subscribers, publishers, and services. They must also be able to communicate with one another to
send and receive data. If your ROS network is not set up correctly, it is possible to be able to send
data and be unable to receive data (or vice versa).

This diagram shows a ROS Network with a single ROS master and two different nodes that register
themselves with the master. Each node contacts the master to find the advertised address of the
other node in the ROS network. Once each node knows the other node's address, a data exchange
can be established without involvement of the master.

1 ROS Featured Examples

1-10

Next Steps

• See “Exchange Data with ROS Publishers and Subscribers” on page 1-25 to explore publishers
and subscribers in ROS.

 Connect to a ROS Network

1-11

Access the ROS Parameter Server
This example explores how to add and retrieve parameters on the ROS parameter server. The
parameter server usually runs on the same device that launches the ROS master. The parameters are
accessible globally over the ROS network and can be used to store static data such as configuration
parameters. Supported data types include strings, integers, doubles, logicals, and cell arrays.

Prerequisites: “Get Started with ROS” on page 1-2, “Connect to a ROS Network” on page 1-7

Create Parameter Tree

Start the ROS master and parameter server in MATLAB.

rosinit

Launching ROS Core...
..Done in 2.4035 seconds.
Initializing ROS master on http://172.30.196.185:53355.
Initializing global node /matlab_global_node_53478 with NodeURI http://bat5125win64:62962/

Create a parameter tree object to interact with the parameter server. Use the parameter tree to
interact with the parameter server and call functions such as set, get, del, has and search. Create
a new parameter server using rosparam.

ptree = rosparam

ptree =
 ParameterTree with properties:

 AvailableParameters: {0x1 cell}

Add New Parameters

To set a parameter for the robot IP address, use the parameter name ROBOT_IP. Check if a
parameter with the same name already exists. Use the has function.

has(ptree,'ROBOT_IP')

ans = logical
 0

If has returns 0 (false) as the output, then the ROBOT_IP name could not be found on the parameter
server.

Add some parameters indicating a robot's IP address to the parameter server. Use the set function
for this purpose.

set(ptree,'ROBOT_IP','192.168.1.1');
set(ptree,'/myrobot/ROBOT_IP','192.168.1.100');

The ROBOT_IP parameters are now available to all nodes connected to this ROS master. You can
specify parameters within a namespace. For example, the /myrobot/ROBOT_IP parameter is within
the /myrobot namespace in this example.

Set more parameters with different data types.

1 ROS Featured Examples

1-12

set(ptree,'MAX_SPEED',1.5);

Use a cell array as an input to the set function. Set a parameter that has the goal coordinates {x, y,
z} for the robot.

set(ptree,'goal',{5.0,2.0,0.0});

Set additional parameters to populate the parameter server.

set(ptree,'/myrobot/ROBOT_NAME','TURTLE');
set(ptree,'/myrobot/MAX_SPEED',1.5);
set(ptree,'/newrobot/ROBOT_NAME','NEW_TURTLE');

Get Parameter Values

Retrieve the robot's IP address from the ROBOT_IP parameter in the /myrobot namespace using the
get function:

robotIP = get(ptree,'/myrobot/ROBOT_IP')

robotIP =
'192.168.1.100'

Get List of All Parameters

To get the entire list of parameters stored on the parameter server, use dot notation to access the
AvailableParameters property. The list contains all the parameters that you added in previous
sections.

plist = ptree.AvailableParameters

plist = 7x1 cell
 {'/MAX_SPEED' }
 {'/ROBOT_IP' }
 {'/goal' }
 {'/myrobot/MAX_SPEED' }
 {'/myrobot/ROBOT_IP' }
 {'/myrobot/ROBOT_NAME' }
 {'/newrobot/ROBOT_NAME'}

Modify Existing Parameters

You can also use the set function to change parameter values. Note that the modification of a
parameter is irreversible, since the parameter server will simply overwrite the parameter with the
new value. You can verify if a parameter already exists by using the has function.

Modify the MAX_SPEED parameter:

set(ptree,'MAX_SPEED',1.0);

The modified value can have a different data type from a previously assigned value. For example, the
value of the MAX_SPEED parameter is currently of type double. Set a string value for the MAX_SPEED
parameter:

set(ptree,'MAX_SPEED','none');

 Access the ROS Parameter Server

1-13

Delete Parameters

Use the del function to delete a parameter from the parameter server.

Delete the goal parameter.

del(ptree,'goal');

Check if the goal parameter has been deleted. Use the has function.

has(ptree,'goal')

ans = logical
 0

The output is 0 (false), which means the parameter was deleted from the parameter server.

Search Parameters

Search for all the parameters that contain 'myrobot' using the search command:

results = search(ptree,'myrobot')

results = 1x3 cell
 {'/myrobot/MAX_SPEED'} {'/myrobot/ROBOT_IP'} {'/myrobot/ROBOT_...'}

Shut Down the ROS Network

Shut down the ROS master and delete the global node.

rosshutdown

Shutting down global node /matlab_global_node_53478 with NodeURI http://bat5125win64:62962/
Shutting down ROS master on http://172.30.196.185:53355.

Next Steps

• For application examples, see the “Get Started with Gazebo and a Simulated TurtleBot” on page 1-
129 or “Get Started with a Real TurtleBot” on page 1-70 examples.

1 ROS Featured Examples

1-14

Work with Basic ROS Messages
Messages are the primary container for exchanging data in ROS. Topics and services use messages to
carry data between nodes. (See “Exchange Data with ROS Publishers and Subscribers” on page 1-25
and “Call and Provide ROS Services” on page 1-40 for more information on topics and services)

To identify its data structure, each message has a message type. For example, sensor data from a
laser scanner is typically sent in a message of type sensor_msgs/LaserScan. Each message type
identifies the data elements that are contained in a message. Every message type name is a
combination of a package name, followed by a forward slash /, and a type name:

MATLAB® supports many ROS message types that are commonly encountered in robotics
applications. This example shows some of the ways to create, explore, and populate ROS messages in
MATLAB.

Prerequisites: “Get Started with ROS” on page 1-2, “Connect to a ROS Network” on page 1-7

Find Message Types

Initialize the ROS master and global node.

rosinit

Launching ROS Core...
..Done in 2.1484 seconds.
Initializing ROS master on http://172.30.196.185:53334.
Initializing global node /matlab_global_node_92828 with NodeURI http://bat5125win64:55045/

Use exampleHelperROSCreateSampleNetwork to populate the ROS network with three additional
nodes and sample publishers and subscribers.

exampleHelperROSCreateSampleNetwork

There are various nodes on the network with a few topics and affiliated publishers and subscribers.

You can see the full list of available topics by calling rostopic list.

rostopic list

/pose
/rosout
/scan
/tf

 Work with Basic ROS Messages

1-15

If you want to know more about the type of data that is sent through the /scan topic, use the
rostopic info command to examine it. /scan has a message type of sensor_msgs/LaserScan.

rostopic info /scan

Type: sensor_msgs/LaserScan

Publishers:
* /node_3 (http://bat5125win64:55063/)

Subscribers:
* /node_1 (http://bat5125win64:55051/)
* /node_2 (http://bat5125win64:55057/)

The command output also tells you which nodes are publishing and subscribing to the topic. To learn
about publishers and subscribers, see “Call and Provide ROS Services” on page 1-40.

To find out more about the topic's message type, create an empty message of the same type using the
rosmessage function. rosmessage supports tab completion for the message type. To complete
message type names, type the first few characters of the name you want to complete, and then press
the Tab key.

scandata = rosmessage('sensor_msgs/LaserScan')

scandata =
 ROS LaserScan message with properties:

 MessageType: 'sensor_msgs/LaserScan'
 Header: [1x1 Header]
 AngleMin: 0
 AngleMax: 0
 AngleIncrement: 0
 TimeIncrement: 0
 ScanTime: 0
 RangeMin: 0
 RangeMax: 0
 Ranges: [0x1 single]
 Intensities: [0x1 single]

 Use showdetails to show the contents of the message

The created message scandata has many properties associated with data typically received from a
laser scanner. For example, the minimum sensing distance is stored in the RangeMin property, and
the maximum sensing distance is in RangeMax.

To see a complete list of all message types available for topics and services, use rosmsg list.

Explore Message Structure and Get Message Data

ROS messages are objects, and the message data is stored in properties. MATLAB features
convenient ways to find and explore the contents of messages.

• If you subscribe to the /pose topic, you can receive and examine the messages that are sent.

posesub = rossubscriber('/pose')

posesub =
 Subscriber with properties:

1 ROS Featured Examples

1-16

 TopicName: '/pose'
 LatestMessage: [0x1 Twist]
 MessageType: 'geometry_msgs/Twist'
 BufferSize: 1
 NewMessageFcn: []
 DataFormat: 'object'

Use receive to get data from the subscriber. Once a new message is received, the function will
return it and store it in the posedata variable (the second argument is a time-out in seconds).

posedata = receive(posesub,10)

posedata =
 ROS Twist message with properties:

 MessageType: 'geometry_msgs/Twist'
 Linear: [1x1 Vector3]
 Angular: [1x1 Vector3]

 Use showdetails to show the contents of the message

The message has a type of geometry_msgs/Twist. There are two other properties in the message:
Linear and Angular. You can see the values of these message properties by accessing them
directly:

posedata.Linear

ans =
 ROS Vector3 message with properties:

 MessageType: 'geometry_msgs/Vector3'
 X: 0.0093
 Y: 0.0453
 Z: 0.0084

 Use showdetails to show the contents of the message

posedata.Angular

ans =
 ROS Vector3 message with properties:

 MessageType: 'geometry_msgs/Vector3'
 X: 0.0878
 Y: -0.0210
 Z: 0.0068

 Use showdetails to show the contents of the message

Each of the values of these message fields is actually a message in itself. The message type for these
is geometry_msgs/Vector3. geometry_msgs/Twist is a composite message made up of two
geometry_msgs/Vector3 messages.

 Work with Basic ROS Messages

1-17

Data access for these nested messages works exactly the same as accessing the data in other
messages. Access the X component of the Linear message using this command:

xpos = posedata.Linear.X

xpos = 0.0093

If you want a quick summary of all the data contained in a message, call the rosShowDetails
function. showdetails works on messages of any type and recursively displays all the message data
properties.

showdetails(posedata)

 Linear
 X : 0.00932219052602273
 Y : 0.04526734562806031
 Z : 0.008449365172780367
 Angular
 X : 0.08782643913382959
 Y : -0.02100276720970422
 Z : 0.006813318676002524

showdetails helps you during debugging and when you want to quickly explore the contents of a
message.

Set Message Data

You can also set message property values. Create a message with type geometry_msgs/Twist.

twist = rosmessage('geometry_msgs/Twist')

twist =
 ROS Twist message with properties:

 MessageType: 'geometry_msgs/Twist'
 Linear: [1x1 Vector3]
 Angular: [1x1 Vector3]

 Use showdetails to show the contents of the message

The numeric properties of this message are initialized to 0 by default. You can modify any of the
properties of this message. Set the Linear.Y entry equal to 5.

twist.Linear.Y = 5;

View the message data to make sure that your change took effect.

twist.Linear

ans =
 ROS Vector3 message with properties:

 MessageType: 'geometry_msgs/Vector3'
 X: 0
 Y: 5
 Z: 0

1 ROS Featured Examples

1-18

 Use showdetails to show the contents of the message

Once a message is populated with your data, you can use it with publishers, subscribers, and
services. See the “Exchange Data with ROS Publishers and Subscribers” on page 1-25 and “Call and
Provide ROS Services” on page 1-40 examples.

Copy Messages

There are two ways to copy the contents of a message:

• You can create a reference copy and the original messages share the same data.
• You can create a deep copy. The deep copy in which the copy and the original messages each have

their own data.

A reference copy is useful if you want to share message data between different functions or objects,
whereas a deep copy is necessary if you want an independent copy of a message.

Make a reference copy of a message by using the = sign. This creates a variable that references the
same message contents as the original variable.

twistCopyRef = twist

twistCopyRef =
 ROS Twist message with properties:

 MessageType: 'geometry_msgs/Twist'
 Linear: [1x1 Vector3]
 Angular: [1x1 Vector3]

 Use showdetails to show the contents of the message

Modify the Linear.Z field of twistCopyRef. This also changes the contents of twist.

twistCopyRef.Linear.Z = 7;
twist.Linear

ans =
 ROS Vector3 message with properties:

 MessageType: 'geometry_msgs/Vector3'
 X: 0
 Y: 5
 Z: 7

 Use showdetails to show the contents of the message

Make a deep copy of twist so that you can change its contents without affecting the original data.
Make a new message, twistCopyDeep, using the copy function:

twistCopyDeep = copy(twist)

twistCopyDeep =
 ROS Twist message with properties:

 MessageType: 'geometry_msgs/Twist'

 Work with Basic ROS Messages

1-19

 Linear: [1x1 Vector3]
 Angular: [1x1 Vector3]

 Use showdetails to show the contents of the message

Modify the Linear.X property of twistCopyDeep. The contents of twist remain unchanged.

twistCopyDeep.Linear.X = 100;
twistCopyDeep.Linear

ans =
 ROS Vector3 message with properties:

 MessageType: 'geometry_msgs/Vector3'
 X: 100
 Y: 5
 Z: 7

 Use showdetails to show the contents of the message

twist.Linear

ans =
 ROS Vector3 message with properties:

 MessageType: 'geometry_msgs/Vector3'
 X: 0
 Y: 5
 Z: 7

 Use showdetails to show the contents of the message

Save and Load Messages

You can save messages and store the contents for later use.

Get a new message from the subscriber.

posedata = receive(posesub,10)

posedata =
 ROS Twist message with properties:

 MessageType: 'geometry_msgs/Twist'
 Linear: [1x1 Vector3]
 Angular: [1x1 Vector3]

 Use showdetails to show the contents of the message

Save the pose data to a MAT file using MATLAB's save function.

save('posedata.mat','posedata')

Before loading the file back into the workspace, clear the posedata variable.

clear posedata

1 ROS Featured Examples

1-20

Now you can load the message data by calling the load function. This loads the posedata from
above into the messageData structure. posedata is a data field of the struct.

messageData = load('posedata.mat')

messageData = struct with fields:
 posedata: [1x1 Twist]

Examine messageData.posedata to see the message contents.

messageData.posedata

ans =
 ROS Twist message with properties:

 MessageType: 'geometry_msgs/Twist'
 Linear: [1x1 Vector3]
 Angular: [1x1 Vector3]

 Use showdetails to show the contents of the message

You can now delete the MAT file.

delete('posedata.mat')

Object Arrays in Messages

Some messages from ROS are stored in “Object Arrays”. These must be handled differently from
typical data arrays.

In your workspace, the variable tf contains a sample message. (The
exampleHelperROSCreateSampleNetwork script created the variable.) In this case, it is a
message of type tf/tfMessage used for coordinate transformations.

tf

tf =
 ROS tfMessage message with properties:

 MessageType: 'tf/tfMessage'
 Transforms: [53x1 TransformStamped]

 Use showdetails to show the contents of the message

tf has two fields: MessageType contains a standard data array, and Transforms contains an object
array. There are 53 objects stored in Transforms, and all of them have the same structure.

Expand tf in Transforms to see the structure:

tf.Transforms

ans =
 53x1 ROS TransformStamped message array with properties:

 MessageType
 Header

 Work with Basic ROS Messages

1-21

 Transform
 ChildFrameId

Each object in Transforms has four properties. You can expand to see the Transform field of
Transforms.

tformFields = tf.Transforms.Transform

Note: The command output returns 53 individual answers, since each object is evaluated and returns
the value of its Transform field. This format is not always useful, so you can convert it to a cell array
with the following command:

cellTransforms = {tf.Transforms.Transform}

cellTransforms=1×53 cell array
 Columns 1 through 4

 {1x1 Transform} {1x1 Transform} {1x1 Transform} {1x1 Transform}

 Columns 5 through 8

 {1x1 Transform} {1x1 Transform} {1x1 Transform} {1x1 Transform}

 Columns 9 through 12

 {1x1 Transform} {1x1 Transform} {1x1 Transform} {1x1 Transform}

 Columns 13 through 16

 {1x1 Transform} {1x1 Transform} {1x1 Transform} {1x1 Transform}

 Columns 17 through 20

 {1x1 Transform} {1x1 Transform} {1x1 Transform} {1x1 Transform}

 Columns 21 through 24

 {1x1 Transform} {1x1 Transform} {1x1 Transform} {1x1 Transform}

 Columns 25 through 28

 {1x1 Transform} {1x1 Transform} {1x1 Transform} {1x1 Transform}

 Columns 29 through 32

 {1x1 Transform} {1x1 Transform} {1x1 Transform} {1x1 Transform}

 Columns 33 through 36

 {1x1 Transform} {1x1 Transform} {1x1 Transform} {1x1 Transform}

 Columns 37 through 40

 {1x1 Transform} {1x1 Transform} {1x1 Transform} {1x1 Transform}

 Columns 41 through 44

1 ROS Featured Examples

1-22

 {1x1 Transform} {1x1 Transform} {1x1 Transform} {1x1 Transform}

 Columns 45 through 48

 {1x1 Transform} {1x1 Transform} {1x1 Transform} {1x1 Transform}

 Columns 49 through 52

 {1x1 Transform} {1x1 Transform} {1x1 Transform} {1x1 Transform}

 Column 53

 {1x1 Transform}

This puts all 53 object entries in a cell array, enabling you to access them with indexing.

In addition, you can access object array elements the same way you access standard MATLAB
vectors:

tf.Transforms(5)

ans =
 ROS TransformStamped message with properties:

 MessageType: 'geometry_msgs/TransformStamped'
 Header: [1x1 Header]
 Transform: [1x1 Transform]
 ChildFrameId: '/imu_link'

 Use showdetails to show the contents of the message

Access the translation component of the fifth transform in the list of 53:

tf.Transforms(5).Transform.Translation

ans =
 ROS Vector3 message with properties:

 MessageType: 'geometry_msgs/Vector3'
 X: 0.0599
 Y: 0
 Z: -0.0141

 Use showdetails to show the contents of the message

Shut Down ROS Network

Remove the sample nodes, publishers, and subscribers from the ROS network.

exampleHelperROSShutDownSampleNetwork

Shut down the ROS master and delete the global node.

rosshutdown

 Work with Basic ROS Messages

1-23

Shutting down global node /matlab_global_node_92828 with NodeURI http://bat5125win64:55045/
Shutting down ROS master on http://172.30.196.185:53334.

Next Steps

• See “Work with Specialized ROS Messages” on page 1-58 for examples of handling images, point
clouds, and laser scan messages.

• For application examples, see the “Get Started with Gazebo and a Simulated TurtleBot” on page 1-
129 or “Get Started with a Real TurtleBot” on page 1-70 examples.

1 ROS Featured Examples

1-24

Exchange Data with ROS Publishers and Subscribers
The primary mechanism for ROS nodes to exchange data is sending and receiving messages.
Messages are transmitted on a topic, and each topic has a unique name in the ROS network. If a node
wants to share information, it uses a publisher to send data to a topic. A node that wants to receive
that information uses a subscriber to that same topic. Besides its unique name, each topic also has a
message type, which determines the types of messages that are capable of being transmitted under
that topic.

This publisher and subscriber communication has the following characteristics:

• Topics are used for many-to-many communication. Many publishers can send messages to the
same topic and many subscribers can receive them.

• Publishers and subscribers are decoupled through topics and can be created and destroyed in any
order. A message can be published to a topic even if there are no active subscribers.

The concept of topics, publishers, and subscribers is illustrated in the figure:

This example shows how to publish and subscribe to topics in a ROS network. It also shows how to:

• Wait until a new message is received
• Use callbacks to process new messages in the background

Prerequisites: “Get Started with ROS” on page 1-2, “Connect to a ROS Network” on page 1-7

Subscribe and Wait for Messages

Start the ROS master in MATLAB® using the rosinit command.

rosinit

Launching ROS Core...
.Done in 1.6566 seconds.
Initializing ROS master on http://172.30.196.185:60242.
Initializing global node /matlab_global_node_38661 with NodeURI http://bat5125win64:55249/

Create a sample ROS network with several publishers and subscribers using the provided helper
function exampleHelperROSCreateSampleNetwork.

 Exchange Data with ROS Publishers and Subscribers

1-25

exampleHelperROSCreateSampleNetwork

Use rostopic list to see which topics are available.

rostopic list

/pose
/rosout
/scan
/tf

Use rostopic info to check if any nodes are publishing to the /scan topic. The command below
shows that node_3 is publishing to it.

rostopic info /scan

Type: sensor_msgs/LaserScan

Publishers:
* /node_3 (http://bat5125win64:55270/)

Subscribers:
* /node_1 (http://bat5125win64:55255/)
* /node_2 (http://bat5125win64:55261/)

Use rossubscriber to subscribe to the /scan topic. If the topic already exists in the ROS network
(as is the case here), rossubscriber detects its message type automatically, so you do not need to
specify it.

laser = rossubscriber('/scan');
pause(2)

Use receive to wait for a new message. (The second argument is a time-out in seconds.) The output
scandata contains the received message data.

scandata = receive(laser,10)

scandata =
 ROS LaserScan message with properties:

 MessageType: 'sensor_msgs/LaserScan'
 Header: [1x1 Header]
 AngleMin: -0.5216
 AngleMax: 0.5243
 AngleIncrement: 0.0016
 TimeIncrement: 0
 ScanTime: 0.0330
 RangeMin: 0.4500
 RangeMax: 10
 Ranges: [640x1 single]
 Intensities: [0x1 single]

 Use showdetails to show the contents of the message

Some message types have visualizers associated with them. For the LaserScan message, rosPlot
plots the scan data. The MaximumRange name-value pair specifies the maximum plot range.

1 ROS Featured Examples

1-26

figure
plot(scandata,'MaximumRange',7)

Subscribe Using Callback Functions

Instead of using receive to get data, you can specify a function to be called when a new message is
received. This allows other MATLAB code to execute while the subscriber is waiting for new
messages. Callbacks are essential if you want to use multiple subscribers.

Subscribe to the /pose topic, using the callback function exampleHelperROSPoseCallback.

robotpose = rossubscriber('/pose',@exampleHelperROSPoseCallback)

robotpose =
 Subscriber with properties:

 TopicName: '/pose'
 LatestMessage: [0x1 Twist]
 MessageType: 'geometry_msgs/Twist'
 BufferSize: 1
 NewMessageFcn: @exampleHelperROSPoseCallback
 DataFormat: 'object'

One way of sharing data between your main workspace and the callback function is to use global
variables. Define two global variables pos and orient.

 Exchange Data with ROS Publishers and Subscribers

1-27

global pos
global orient

The global variables pos and orient are assigned in the exampleHelperROSPoseCallback
function when new message data is received on the /pose topic.

Wait for a few seconds to make sure that the subscriber can receive messages. The most current
position and orientation data will always be stored in the pos and orient variables.

pause(2)
pos

pos = 1×3

 -0.1601 -0.2460 0.0367

orient

orient = 1×3

 -0.2281 0.2442 0.1526

If you type in pos and orient a few times in the command line, you can see that the values are
continuously updated.

Stop the pose subscriber by clearing the subscriber variable

clear robotpose

Note: There are other ways to extract information from callback functions besides using globals. For
example, you can pass a handle object as additional argument to the callback function. See the
“Callback Definition” documentation for more information about defining callback functions.

Publish Messages

Create a publisher that sends ROS string messages to the /chatter topic (see “Work with Basic ROS
Messages” on page 1-15).

chatterpub = rospublisher('/chatter','std_msgs/String')

chatterpub =
 Publisher with properties:

 TopicName: '/chatter'
 NumSubscribers: 0
 IsLatching: 1
 MessageType: 'std_msgs/String'
 DataFormat: 'object'

pause(2) % Wait to ensure publisher is registered

Create and populate a ROS message to send to the /chatter topic.

chattermsg = rosmessage(chatterpub);
chattermsg.Data = 'hello world'

1 ROS Featured Examples

1-28

chattermsg =
 ROS String message with properties:

 MessageType: 'std_msgs/String'
 Data: 'hello world'

 Use showdetails to show the contents of the message

Use rostopic list to verify that the /chatter topic is available in the ROS network.

rostopic list

/chatter
/pose
/rosout
/scan
/tf

Define a subscriber for the /chatter topic. exampleHelperROSChatterCallback is called when a
new message is received and displays the string content in the message.

chattersub = rossubscriber('/chatter', @exampleHelperROSChatterCallback)

chattersub =
 Subscriber with properties:

 TopicName: '/chatter'
 LatestMessage: [0x1 String]
 MessageType: 'std_msgs/String'
 BufferSize: 1
 NewMessageFcn: @exampleHelperROSChatterCallback
 DataFormat: 'object'

Publish a message to the /chatter topic. The string is displayed by the subscriber callback.

send(chatterpub,chattermsg)
pause(2)

ans =
'hello world'

The exampleHelperROSChatterCallback function was called as soon as you published the string
message.

Shut Down ROS Network

Remove the sample nodes, publishers, and subscribers from the ROS network. Clear the global
variables pos and orient.

exampleHelperROSShutDownSampleNetwork
clear global pos orient

Shut down the ROS master and delete the global node.

rosshutdown

Shutting down global node /matlab_global_node_38661 with NodeURI http://bat5125win64:55249/
Shutting down ROS master on http://172.30.196.185:60242.

 Exchange Data with ROS Publishers and Subscribers

1-29

Next Steps

• To learn more about how ROS messages are handled in MATLAB, see “Work with Basic ROS
Messages” on page 1-15 and “Work with Specialized ROS Messages” on page 1-58.

• To explore ROS services, refer to “Call and Provide ROS Services” on page 1-40.

1 ROS Featured Examples

1-30

Improve Performance of ROS Using Message Structures
This example demonstrates the use of ROS message structures, and their benefits and differences
from message objects.

Message structures have better performance over objects when performing initial creation, reading
them from rosbag files, accessing nested properties, and performing communication operations over
the ROS network. Also, message structures are the only supported message format when generating
code through MATLAB Coder™.

Message Structure Basics

ROS message objects are instances of classes defined specifically for each message type.

msgObj = rosmessage("nav_msgs/Path");
class(msgObj)

ans =
'ros.msggen.nav_msgs.Path'

The object properties contain the data of the message, and each object type has functions defined
that are specific to the ROS message.

showdetails(msgObj)

 Header
 Stamp
 Sec : 0
 Nsec : 0
 Seq : 0
 FrameId :
 Poses

ROS message structures have been introduced to improve the performance of using ROS messages.
Each message is a MATLAB® structure data type with the same fields as the properties of the ROS
message objects.

msgStruct = rosmessage("nav_msgs/Path","DataFormat","struct")

msgStruct = struct with fields:
 MessageType: 'nav_msgs/Path'
 Header: [1x1 struct]
 Poses: [0x1 struct]

class(msgStruct)

ans =
'struct'

Update Existing Code to Use Structures

To update existing code that uses objects, two common workflows are provided with the steps
required to update them.

Communication Workflow

This example code shows how to send and receive messages over the ROS network.

 Improve Performance of ROS Using Message Structures

1-31

% Setup ROS network
rosinit

Launching ROS Core...
.Done in 1.6351 seconds.
Initializing ROS master on http://172.30.196.185:54728.
Initializing global node /matlab_global_node_02779 with NodeURI http://bat5125win64:55965/

stringPub = rospublisher("/chatter","std_msgs/String");
stringSub = rossubscriber("/chatter","std_msgs/String");

% Set message field and send message
stringMsg = rosmessage("std_msgs/String");
stringMsg.Data = 'Hello World!';
send(stringPub,stringMsg)

% Wait for message to be received and then check the value
pause(2)
showdetails(stringSub.LatestMessage)

 Data : Hello World!

How to Update

Set the data format name-value argument of the publisher and subscriber.

stringPub = rospublisher("/chatter","std_msgs/String","DataFormat","struct");
stringSub = rossubscriber("/chatter","std_msgs/String","DataFormat","struct");

Update the data format for the rosmessage function as well.

stringMsg = rosmessage("std_msgs/String","DataFormat","struct");
stringMsg.Data = 'Hello World!';
send(stringPub,stringMsg)

Alternatively, the rosmessage object function for the publisher can be used. This syntax produces a
message that follows the format set in the publisher, and is the most efficient way to ensure
compatibility between the message and the publisher.

stringMsg = rosmessage(stringPub);
stringMsg.Data = 'Hello World!';
send(stringPub,stringMsg)

Because structures do not have object functions, new functions are provided to handle common ROS
message tasks. To show details a structure message, use the rosShowDetails function. To see all
the new functions provided, go to Message Handling Functions on page 1-0 .

% Wait for message to be received and then check the value
pause(2)
rosShowDetails(stringSub.LatestMessage)

ans =
 '
 MessageType : std_msgs/String
 Data : Hello World!'

1 ROS Featured Examples

1-32

Read rosbag Workflow

For an example that reads messages from a rosbag, specifiy the DataFormat name-value argument
for the readMessages function and any publishers you use to send those messages.

% Extract message from rosbag
msgType = "nav_msgs/Odometry";
bag = rosbag("ex_multiple_topics.bag");
bagSelect = select(bag,"MessageType",msgType);
odomMsgs = readMessages(bagSelect,"DataFormat","struct");
odomMsg = odomMsgs{1}

odomMsg = struct with fields:
 MessageType: 'nav_msgs/Odometry'
 Header: [1x1 struct]
 ChildFrameId: 'base_footprint'
 Pose: [1x1 struct]
 Twist: [1x1 struct]

% Create publisher and send first message
odomPub = rospublisher("/odom",msgType,"DataFormat","struct");
send(odomPub,odomMsg)

Message Handling Functions

Because functions on the ROS message objects are not usable with message structures, new
functions have been introduced for handling messages. This list includes functions for reading data
from or writing data to specialized messages.

 Improve Performance of ROS Using Message Structures

1-33

Behavior Changes

Handle Class vs. Structure Behavior

An important consideration when converting code is that ROS message objects are handles, which
means that message objects are passed by reference when provided as inputs to functions. If a
message is modified within a function, the modification applies to the message in the MATLAB®
workspace as well.

msgObj = rosmessage("geometry_msgs/Pose2D");
pose = [1 2 3];
exampleHelperWritePoseToMsgObj(msgObj,pose)
disp(msgObj)

 ROS Pose2D message with properties:

 MessageType: 'geometry_msgs/Pose2D'
 X: 1
 Y: 2
 Theta: 3

 Use showdetails to show the contents of the message

function exampleHelperWritePoseToMsgObj(pointMsg,pose)
pointMsg.X = pose(1);
pointMsg.Y = pose(2);
pointMsg.Theta = pose(3);
end

1 ROS Featured Examples

1-34

Message structures only pass their value when input into functions. If a message structure is
modified within a function, that modification will only apply to the structure within the scope of that
function. To make the modification available outside of the function, the message structure must be
returned.

msgStruct = rosmessage("geometry_msgs/Pose2D","DataFormat","struct");
pose = [1 2 3];

% With no return, the message structure will not change
exampleHelperWritePoseToMsgObj(msgStruct, pose)
disp(msgStruct)

 MessageType: 'geometry_msgs/Pose2D'
 X: 0
 Y: 0
 Theta: 0

% When returned from the function, the message can be overwritten.
msgStruct = exampleHelperWritePoseToMsgStruct(msgStruct, pose);
disp(msgStruct)

 MessageType: 'geometry_msgs/Pose2D'
 X: 1
 Y: 2
 Theta: 3

function pointMsg = exampleHelperWritePoseToMsgStruct(pointMsg,pose)
pointMsg.X = pose(1);
pointMsg.Y = pose(2);
pointMsg.Theta = pose(3);
end

This applies to the specialized message handling functions as well. The write functions that update
message values now have output arguments to supply the updated message structure.

image = imread('imageMap.png');

% Message object
msg = rosmessage("sensor_msgs/Image");
msg.Encoding = 'rgb8';
writeImage(msg,image)
imshow(readImage(msg))

 Improve Performance of ROS Using Message Structures

1-35

% Message structure
msg = rosmessage("sensor_msgs/Image","DataFormat","struct");
msg.Encoding = 'rgb8';
msg = rosWriteImage(msg,image);
imshow(rosReadImage(msg))
close

Time and Duration Arithmatic

ROS time and duration message structures are unable to support operator overloading in the same
way that the time and duration objects do. Arithmetic and comparison operations should be done by
converting the time or duration structures to a numerical seconds value, performing the operation,
and then recreating the time or duration structure if necessary.

% Periodically update message timestamp with objects
msg = rosmessage("std_msgs/Header");
runFor = rosduration(2);
tNow = rostime("now");
tEnd = tNow + runFor;
while tNow < tEnd
 msg.Stamp = tNow;
 % Message may be sent here
 pause(1)
 tNow = rostime("now");
end
% Periodically update message timestamp with structures
msg = rosmessage("std_msgs/Header","DataFormat","struct");
runFor = 2;
tNow = rostime("now","DataFormat","struct");
tNowSec = tNow.Sec + tNow.Nsec*1e-9;
tEndSec = tNowSec + runFor;
while tNowSec < tEndSec

1 ROS Featured Examples

1-36

 msg.Stamp = tNow;
 % Message may be sent here
 pause(1)
 tNow = rostime("now","DataFormat","struct");
 tNowSec = tNow.Sec + tNow.Nsec*1e-9;
end

Data Field Coercion

With ROS message objects, data fields have specific types. When a data field value is set, the input is
converted to the correct type if possible. Otherwise, if conversion is not possible, an error is returned.

msg = rosmessage("std_msgs/Int8");
msg.Data = 20;
class(msg.Data)

ans =
'int8'

ROS message structures inherently accept any data type or field name without error.

msg = rosmessage("std_msgs/Int8","DataFormat","struct");
msg.Data = 'Test'

msg = struct with fields:
 MessageType: 'std_msgs/Int8'
 Data: 'Test'

msg.Data = 20;
class(msg.Data)

ans =
'double'

Instead, invalid data types error when attempting to send the message over the ROS network.

pub = rospublisher("/int_topic","std_msgs/Int8","DataFormat","struct");
send(pub,msg)

Error using ros.Publisher/send (line 290)
Error publishing a message with type std_msgs/Int8 on topic name /int_topic.

Caused by:
 Error using ros.internal.Node/publish
 Field 'Data' is wrong type; expected a int8.

To prevent errors, ensure that messages are are using the correct data type from the message
definition.

rosmsg show std_msgs/Int8

int8 Data

Other Performance Tips

Using message structures is a good first step to speed up the sending and retrieving of ROS
messages. Structures also improves the performance for setting and accessing data in nested
mesages.The following code demonstrates sending multiple messages with nested fields.

 Improve Performance of ROS Using Message Structures

1-37

% Set up network (reuse publisher for all examples)
pub = rospublisher("/goal_path","nav_msgs/Path","DataFormat","struct");

% Send robot new paths to follow
nPtsOnPath = 100;
for iPaths = 1:15
 pathMsg = rosmessage(pub);
 for iPts = 1:nPtsOnPath
 pathMsg.Poses(iPts) = rosmessage("geometry_msgs/PoseStamped","DataFormat","struct");
 pathMsg.Poses(iPts).Pose.Position.X = iPaths+iPts;
 pathMsg.Poses(iPts).Pose.Position.Y = iPaths-iPts;
 pathMsg.Poses(iPts).Pose.Position.Z = (iPaths+iPts)/10;
 end
 send(pub,pathMsg)
end

Reuse Messages

If messages are being created and modified in a loop, and the same data fields are being set each
iteration, it is faster to create the message only once. Move the creation of the messages outside the
loop, and reuse the same messages inside the loop for each iteration.

% Set up messages for use
pathMsg = rosmessage(pub);
poseMsg = rosmessage("geometry_msgs/PoseStamped","DataFormat","struct");

% Send robot new paths to follow
nPtsOnPath = 100;
for iPaths = 1:15
 for iPts = 1:nPtsOnPath
 pathMsg.Poses(iPts) = poseMsg;
 pathMsg.Poses(iPts).Pose.Position.X = iPaths+iPts;
 pathMsg.Poses(iPts).Pose.Position.Y = iPaths-iPts;
 pathMsg.Poses(iPts).Pose.Position.Z = (iPaths+iPts)/10;
 end
 send(pub,pathMsg)
end

Extract Nested Messages for Manipulation

When reading or setting multiple fields in a nested message, extract the nested message before
reading or setting the fields.

% Set up messages for use
pathMsg = rosmessage(pub);
poseMsg = rosmessage("geometry_msgs/PoseStamped","DataFormat","struct");
ptMsg = poseMsg.Pose.Position; % Extract nested message

% Send robot new paths to follow
nPtsOnPath = 100;
for iPaths = 1:15
 for iPts = 1:nPtsOnPath
 % Set fields before setting nested message
 ptMsg.X = iPaths+iPts;
 ptMsg.Y = iPaths-iPts;
 ptMsg.Z = (iPaths+iPts)/10;
 poseMsg.Pose.Position = ptMsg;
 pathMsg.Poses(iPts) = poseMsg;

1 ROS Featured Examples

1-38

 end
 send(pub,pathMsg)
end

Preallocate Message Struct Arrays

For relatively large arrays of messages, preallocating a structure array can improve performance
when setting values in a loop. Use this method when the the array is a fixed length every iteration.

% Set up messages for use
pathMsg = rosmessage(pub);
poseMsg = rosmessage("geometry_msgs/PoseStamped","DataFormat","struct");
ptMsg = poseMsg.Pose.Position; % Extract nested message

% Preallocate path array
nPtsOnPath = 100;
pathMsg.Poses(nPtsOnPath) = poseMsg;

% Send robot new paths to follow
for iPaths = 1:15
 for iPts = 1:nPtsOnPath
 % Set fields before setting nested message
 ptMsg.X = iPaths+iPts;
 ptMsg.Y = iPaths-iPts;
 ptMsg.Z = (iPaths+iPts)/10;
 poseMsg.Pose.Position = ptMsg;
 pathMsg.Poses(iPts) = poseMsg;
 end
 send(pub,pathMsg)
end

The ROS network can now be shut down.

rosshutdown

Shutting down global node /matlab_global_node_02779 with NodeURI http://bat5125win64:55965/
Shutting down ROS master on http://172.30.196.185:54728.

 Improve Performance of ROS Using Message Structures

1-39

Call and Provide ROS Services
ROS supports two main communication mechanisms: topics and services. Topics have publishers and
subscribers and are used for sending and receiving messages (see “Exchange Data with ROS
Publishers and Subscribers” on page 1-25). Services, on the other hand, implement a tighter coupling
by allowing request-response communication. A service client sends a request message to a service
server and waits for a response. The server will use the data in the request to construct a response
message and sends it back to the client. Each service has a type that determines the structure of the
request and response messages. Services also have a name that is unique in the ROS network.

This service communication has the following characteristics:

• A service request (or service call) is used for one-to-one communication. A single node will initiate
the request and only one node will receive the request and send back a response.

• A service client and a service server are tightly coupled when a service call is executed. The
server needs to exist at the time of the service call and once the request is sent, the client will
block until a response is received.

The concept of services is illustrated in the following image:

This example shows you how to set up service servers to advertise a service to the ROS network. In
addition, you will learn how to use service clients to call the server and receive a response.

Prerequisites: “Get Started with ROS” on page 1-2, “Connect to a ROS Network” on page 1-7,
“Exchange Data with ROS Publishers and Subscribers” on page 1-25

1 ROS Featured Examples

1-40

Create Service Server

Before examining service concepts, start the ROS master in MATLAB® and the sample ROS network.
exampleHelperROSCreateSampleNetwork will create some service servers to simulate a realistic
ROS network.

rosinit

Initializing ROS master on http://HYD-GDAVULUR:53363/.
Initializing global node /matlab_global_node_86569 with NodeURI http://HYD-GDAVULUR:53367/

exampleHelperROSCreateSampleNetwork

Suppose you want to make a simple service server that displays "A service client is calling" when you
call the service. Create the service using the rossvcserver command. Specify the service name and
the service message type. Also define the callback function as exampleHelperROSEmptyCallback.
Callback functions for service servers have a very specific signature. For details, see the
documentation of rossvcserver.

testserver = rossvcserver('/test', 'std_srvs/Empty', @exampleHelperROSEmptyCallback)

testserver =
 ServiceServer with properties:

 ServiceName: '/test'
 ServiceType: 'std_srvs/Empty'
 NewRequestFcn: @exampleHelperROSEmptyCallback

You can see your new service, /test, when you list all services in the ROS network.

rosservice list

/add
/reply
/test

You can get more information about your service using rosservice info. The global node is listed
as node where the service server is reachable and you also see its std_srvs/Empty service type.

rosservice info /test

Node: /matlab_global_node_86569
URI: rosrpc://HYD-GDAVULUR:53368/
Type: std_srvs/Empty
Args:

Create Service Client

Use service clients to request information from a ROS service server. To create a client, use
rossvcclient with the service name as the argument.

Create a service client for the /test service that we just created.

testclient = rossvcclient('/test')

testclient =
 ServiceClient with properties:

 Call and Provide ROS Services

1-41

 ServiceName: '/test'
 ServiceType: 'std_srvs/Empty'

Create an empty request message for the service. Use the rosmessage function and pass the client
as the first argument. This will create a service request function that has the message type that is
specified by the service.

testreq = rosmessage(testclient)

testreq =
 ROS EmptyRequest message with properties:

 MessageType: 'std_srvs/EmptyRequest'

 Use showdetails to show the contents of the message

When you want to get a response from the server, use the call function, which calls the service
server and returns a response. The service server you created before will return an empty response.
In addition, it will call the exampleHelperROSEmptyCallback function and displays the string "A
service client is calling". You can also define a Timeout parameter, which indicates how long the
client should wait for a response.

testresp = call(testclient,testreq,'Timeout',3);

Create a Service for Adding Two Numbers

Up to now, the service server has not done any meaningful work, but you can use services for
computations and data manipulation. Create a service that adds two integers.

There is an existing service type, roscpp_tutorials/TwoInts, that we can use for this task. You
can inspect the structure of the request and response messages by calling rosmsg show. The
request contains two integers, A and B, and the response contains their addition in Sum.

rosmsg show roscpp_tutorials/TwoIntsRequest

int64 A
int64 B

rosmsg show roscpp_tutorials/TwoIntsResponse

int64 Sum

Create the service server with this message type and a callback function that calculates the addition.
For your convenience, the exampleHelperROSSumCallback function already implements this
calculation. Specify the function as a callback.

sumserver = rossvcserver('/sum', 'roscpp_tutorials/TwoInts', @exampleHelperROSSumCallback)

sumserver =
 ServiceServer with properties:

 ServiceName: '/sum'
 ServiceType: 'roscpp_tutorials/TwoInts'
 NewRequestFcn: @exampleHelperROSSumCallback

1 ROS Featured Examples

1-42

To call the service server, you have to create a service client. Note that this client can be created
anywhere in the ROS network. For the purposes of this example, we will create a client for the /sum
service in MATLAB.

sumclient = rossvcclient('/sum')

sumclient =
 ServiceClient with properties:

 ServiceName: '/sum'
 ServiceType: 'roscpp_tutorials/TwoInts'

Create the request message. You can define the two integers, A and B, which are added together
when you use the call command.

sumreq = rosmessage(sumclient);
sumreq.A = 2;
sumreq.B = 1

sumreq =
 ROS TwoIntsRequest message with properties:

 MessageType: 'roscpp_tutorials/TwoIntsRequest'
 A: 2
 B: 1

 Use showdetails to show the contents of the message

The expectation is that the sum of these two numbers will be 3. To call the service, use the following
command. The service response message will contain a Sum property, which stores the addition of A
and B.

sumresp = call(sumclient,sumreq,'Timeout',3)

sumresp =
 ROS TwoIntsResponse message with properties:

 MessageType: 'roscpp_tutorials/TwoIntsResponse'
 Sum: 3

 Use showdetails to show the contents of the message

Shut Down ROS Network

Remove the sample nodes and service servers from the ROS network.

exampleHelperROSShutDownSampleNetwork

Shut down the ROS master and delete the global node.

rosshutdown

Shutting down global node /matlab_global_node_86569 with NodeURI http://HYD-GDAVULUR:53367/
Shutting down ROS master on http://HYD-GDAVULUR:53363/.

 Call and Provide ROS Services

1-43

Next Steps

• Refer to “Work with Basic ROS Messages” on page 1-15 to explore how ROS messages are
represented in MATLAB.

1 ROS Featured Examples

1-44

Work with rosbag Logfiles
A rosbag or bag is a file format in ROS for storing message data. These bags are often created by
subscribing to one or more ROS topics, and storing the received message data in an efficient file
structure. MATLAB® can read these rosbag files and help with filtering and extracting message data.
See “ROS Log Files (rosbags)” on page 3-13 for more information about rosbag support in MATLAB.

In this example, you will load a rosbag and learn how to select and retrieve the contained messages.

Prerequisites: “Work with Basic ROS Messages” on page 1-15

Load a rosbag

Load an example file using the rosbag command.

bag = rosbag('ex_multiple_topics.bag')

bag =
 BagSelection with properties:

 FilePath: 'C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\27\tpbba55727\ros-ex71482057\ex_multiple_topics.bag'
 StartTime: 201.3400
 EndTime: 321.3400
 NumMessages: 36963
 AvailableTopics: [4x3 table]
 AvailableFrames: {0x1 cell}
 MessageList: [36963x4 table]

The object returned from the rosbag call is a BagSelection object, which is a representation of all
the messages in the rosbag.

The object display shows details about how many messages are contained in the file (NumMessages)
and the time when the first (StartTime) and the last (EndTime) message were recorded.

Evaluate the AvailableTopics property to see more information about the topics and message
types that are recorded in the bag:

bag.AvailableTopics

ans=4×3 table
 NumMessages MessageType MessageDefinition
 ___________ ______________________ ________________________________

 /clock 12001 rosgraph_msgs/Clock {0x0 char }
 /gazebo/link_states 11999 gazebo_msgs/LinkStates {'geometry_msgs/Pose[] Pose...'}
 /odom 11998 nav_msgs/Odometry {' uint32 Seq...' }
 /scan 965 sensor_msgs/LaserScan {' uint32 Seq...' }

The AvailableTopics table contains the sorted list of topics that are included in the rosbag. The
table stores the number of messages, the message type, and the message definition for the topic. For
more information on the MATLAB table data type and what operations you can perform on it, see the
documentation for “Tables”.

Initially the rosbag is only indexed by MATLAB and no actual message data is read.

 Work with rosbag Logfiles

1-45

You might want to filter and narrow the selection of messages as much as possible based on this
index before any messages are loaded into MATLAB memory.

Select Messages

Before you retrieve any message data, you must select a set of messages based on criteria such as
time stamp, topic name, and message type.

You can examine all the messages in the current selection:

bag.MessageList

ans=36963×4 table
 Time Topic MessageType FileOffset
 ______ ___________________ ______________________ __________

 201.34 /gazebo/link_states gazebo_msgs/LinkStates 9866
 201.34 /odom nav_msgs/Odometry 7666
 201.34 /clock rosgraph_msgs/Clock 4524
 201.35 /clock rosgraph_msgs/Clock 10962
 201.35 /clock rosgraph_msgs/Clock 12876
 201.35 /odom nav_msgs/Odometry 12112
 201.35 /gazebo/link_states gazebo_msgs/LinkStates 11016
 201.36 /gazebo/link_states gazebo_msgs/LinkStates 12930
 201.36 /odom nav_msgs/Odometry 14026
 201.37 /odom nav_msgs/Odometry 14844
 201.37 /gazebo/link_states gazebo_msgs/LinkStates 15608
 201.37 /clock rosgraph_msgs/Clock 14790
 201.38 /clock rosgraph_msgs/Clock 16704
 201.38 /gazebo/link_states gazebo_msgs/LinkStates 16758
 201.38 /odom nav_msgs/Odometry 17854
 201.39 /gazebo/link_states gazebo_msgs/LinkStates 18672
 ⋮

The MessageList table contains one row for each message in the bag (there are over 30,000 rows
for the bag in this example). The rows are sorted by time stamp in the first column, which represents
the time (in seconds) that the message was recorded.

Since the list is very large, you can also display a selection of rows with the familiar row and column
selection syntax:

bag.MessageList(500:505,:)

ans=6×4 table
 Time Topic MessageType FileOffset
 ____ ___________________ ______________________ __________

 203 /clock rosgraph_msgs/Clock 339384
 203 /gazebo/link_states gazebo_msgs/LinkStates 331944
 203 /gazebo/link_states gazebo_msgs/LinkStates 333040
 203 /gazebo/link_states gazebo_msgs/LinkStates 334136
 203 /gazebo/link_states gazebo_msgs/LinkStates 335232
 203 /odom nav_msgs/Odometry 336328

Use the select function to narrow the selection of messages. The select function operates on the
bag object.

1 ROS Featured Examples

1-46

You can filter the message list by time, topic name, message type, or any combination of the three.

To select all messages that were published on the /odom topic, use the following select command:

bagselect1 = select(bag, 'Topic', '/odom')

bagselect1 =
 BagSelection with properties:

 FilePath: 'C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\27\tpbba55727\ros-ex71482057\ex_multiple_topics.bag'
 StartTime: 201.3400
 EndTime: 321.3300
 NumMessages: 11998
 AvailableTopics: [1x3 table]
 AvailableFrames: {0x1 cell}
 MessageList: [11998x4 table]

Calls to the select function return another BagSelection object, which can be used to make
further selections or retrieve message data. All selection objects are independent of each other, so
you can clear them from the workspace once you are done.

You can make a different selection that combines two criteria. To get the list of messages that were
recorded within the first 30 seconds of the rosbag and published on the /odom topic, enter the
following command:

start = bag.StartTime

start = 201.3400

bagselect2 = select(bag, 'Time', [start start + 30], 'Topic', '/odom')

bagselect2 =
 BagSelection with properties:

 FilePath: 'C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\27\tpbba55727\ros-ex71482057\ex_multiple_topics.bag'
 StartTime: 201.3400
 EndTime: 231.3200
 NumMessages: 2997
 AvailableTopics: [1x3 table]
 AvailableFrames: {0x1 cell}
 MessageList: [2997x4 table]

Use the last selection to narrow down the time window even further:

bagselect3 = select(bagselect2, 'Time', [205 206])

bagselect3 =
 BagSelection with properties:

 FilePath: 'C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\27\tpbba55727\ros-ex71482057\ex_multiple_topics.bag'
 StartTime: 205.0200
 EndTime: 205.9900
 NumMessages: 101
 AvailableTopics: [1x3 table]
 AvailableFrames: {0x1 cell}
 MessageList: [101x4 table]

 Work with rosbag Logfiles

1-47

The selection in this last step operated on the existing bagselect2 selection and returned a new
bagselect3 object.

If you want to save a set of selection options, store the selection elements in a cell array and then re-
use it later as an input to the select function:

selectOptions = {'Time', [start, start+1; start+5, start+6], 'MessageType', {'sensor_msgs/LaserScan', 'nav_msgs/Odometry'}};
bagselect4 = select(bag, selectOptions{:})

bagselect4 =
 BagSelection with properties:

 FilePath: 'C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\27\tpbba55727\ros-ex71482057\ex_multiple_topics.bag'
 StartTime: 201.3400
 EndTime: 207.3300
 NumMessages: 209
 AvailableTopics: [2x3 table]
 AvailableFrames: {0x1 cell}
 MessageList: [209x4 table]

Read Selected Message Data

After you narrow your message selection, you might want to read the actual message data into
MATLAB. Depending on the size of your selection, this can take a long time and consume a lot of your
computer's memory.

To retrieve the messages in you selection as a cell array, use the readMessages function:

msgs = readMessages(bagselect3);
size(msgs)

ans = 1×2

 101 1

The resulting cell array contains as many elements as indicated in the NumMessages property of the
selection object.

In reading message data, you can also be more selective and only retrieve messages at specific
indices. Here is an example of retrieving 4 messages:

msgs = readMessages(bagselect3, [1 2 3 7])

msgs=4×1 cell array
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}

msgs{2}

ans =
 ROS Odometry message with properties:

 MessageType: 'nav_msgs/Odometry'

1 ROS Featured Examples

1-48

 Header: [1x1 Header]
 Pose: [1x1 PoseWithCovariance]
 Twist: [1x1 TwistWithCovariance]
 ChildFrameId: 'base_footprint'

 Use showdetails to show the contents of the message

Each message in the cell array is a standard MATLAB ROS message object. For more information on
messages, see the “Work with Basic ROS Messages” on page 1-15 example.

Extract Message Data as Time Series

Sometimes you are not interested in the complete messages, but only in specific properties that are
common to all the messages in a selection. In this case, it is helpful to retrieve the message data as a
time series instead. A time series is a data vector that is sampled over time and represents the time
evolution of one or more dynamic properties. For more information on the MATLAB time series
support, see the documentation for “Time Series”.

In the case of ROS messages within a rosbag, a time series can help to express the change in
particular message elements through time. You can extract this information through the timeseries
function. This is memory-efficient, since the complete messages do not have to be stored in memory.

Use the same selection, but use the timeseries function to only extract the properties for x-position
and z-axis angular velocity:

ts = timeseries(bagselect3, 'Pose.Pose.Position.X', 'Twist.Twist.Angular.Z')

 timeseries

 Timeseries contains duplicate times.

 Common Properties:
 Name: '/odom Properties'
 Time: [101x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [101x2 double]
 DataInfo: tsdata.datametadata

The return of this call is a timeseries object that can be used for further analysis or processing.

Note that this method of extracting data is only supported if the current selection contains a single
topic with a single message type.

To see the data contained within the time series, access the Data property:

ts.Data

ans = 101×2

 0.0003 0.0003
 0.0003 0.0003
 0.0003 -0.0006
 0.0003 -0.0006
 0.0003 -0.0010
 0.0003 -0.0010
 0.0003 -0.0003

 Work with rosbag Logfiles

1-49

 0.0003 -0.0003
 0.0003 -0.0003
 0.0003 -0.0003
 ⋮

There are many other possible ways to work with the time series data. Calculate the mean of the data
columns:

mean(ts)

ans = 1×2
10-3 ×

 0.3213 -0.4616

You can also plot the data of the time series:

figure
plot(ts, 'LineWidth', 3)

1 ROS Featured Examples

1-50

Access the tf Transformation Tree in ROS
The tf system in ROS keeps track of multiple coordinate frames and maintains the relationship
between them in a tree structure. tf is distributed, so that all coordinate frame information is
available to every node in the ROS network. MATLAB® enables you to access this transformation
tree. This example familiarizes you with accessing the available coordinate frames, retrieving
transformations between them, and transform points, vectors, and other entities between any two
coordinate frames.

Prerequisites: “Get Started with ROS” on page 1-2, “Connect to a ROS Network” on page 1-7

Start up

Initialize the ROS system.

rosinit

Launching ROS Core...
.Done in 1.595 seconds.
Initializing ROS master on http://172.30.196.185:54698.
Initializing global node /matlab_global_node_00458 with NodeURI http://bat5125win64:62996/

To create a realistic environment for this example, use exampleHelperROSStartTfPublisher to
broadcast several transformations. The transformations represent a camera that is mounted on a
robot.

There are three coordinate frames that are defined in this transformation tree:

• the robot base frame (robot_base)
• the camera's mounting point (mounting_point)
• the optical center of the camera (camera_center)

Two transforms are being published:

• the transformation from the robot base to the camera's mounting point
• the transformation from the mounting point to the center of the camera

exampleHelperROSStartTfPublisher

A visual representation of the three coordinate frames looks as follows.

 Access the tf Transformation Tree in ROS

1-51

Here, the x, y, and z axes of each frame are represented by red, green, and blue lines respectively.
The parent-child relationship between the coordinate frames is shown through a brown arrow
pointing from the child to its parent frame.

Create a new transformation tree object with the rostf function. You can use this object to access all
available transformations and apply them to different entities.

tftree = rostf

tftree =
 TransformationTree with properties:

 AvailableFrames: {0x1 cell}
 LastUpdateTime: [0x1 Time]
 BufferTime: 10
 DataFormat: 'object'

Once the object is created, it starts receiving tf transformations and buffers them internally. Keep the
tftree variable in the workspace so that it continues to receive data.

Pause for a little bit to make sure that all transformations are received.

pause(2);

You can see the names of all the available coordinate frames by accessing the AvailableFrames
property.

tftree.AvailableFrames

ans = 3x1 cell
 {'camera_center' }

1 ROS Featured Examples

1-52

 {'mounting_point'}
 {'robot_base' }

This should show the three coordinate frames that describe the relationship between the camera, its
mounting point, and the robot.

Receive Transformations

Now that the transformations are available, you can inspect them. Any transformation is described by
a ROS geometry_msgs/TransformStamped message and has a translational and rotational
component.

Retrieve the transformation that describes the relationship between the mounting point and the
camera center. Use the getTransform function to do that.

mountToCamera = getTransform(tftree, 'mounting_point', 'camera_center');
mountToCameraTranslation = mountToCamera.Transform.Translation

mountToCameraTranslation =
 ROS Vector3 message with properties:

 MessageType: 'geometry_msgs/Vector3'
 X: 0
 Y: 0
 Z: 0.5000

 Use showdetails to show the contents of the message

quat = mountToCamera.Transform.Rotation

quat =
 ROS Quaternion message with properties:

 MessageType: 'geometry_msgs/Quaternion'
 X: 0
 Y: 0.7071
 Z: 0
 W: 0.7071

 Use showdetails to show the contents of the message

mountToCameraRotationAngles = rad2deg(quat2eul([quat.W quat.X quat.Y quat.Z]))

mountToCameraRotationAngles = 1×3

 0 90 0

Relative to the mounting point, the camera center is located 0.5 meters along the z-axis and is rotated
by 90 degrees around the y-axis.

To inspect the relationship between the robot base and the camera's mounting point, call
getTransform again.

baseToMount = getTransform(tftree, 'robot_base', 'mounting_point');
baseToMountTranslation = baseToMount.Transform.Translation

 Access the tf Transformation Tree in ROS

1-53

baseToMountTranslation =
 ROS Vector3 message with properties:

 MessageType: 'geometry_msgs/Vector3'
 X: 1
 Y: 0
 Z: 0

 Use showdetails to show the contents of the message

baseToMountRotation = baseToMount.Transform.Rotation

baseToMountRotation =
 ROS Quaternion message with properties:

 MessageType: 'geometry_msgs/Quaternion'
 X: 0
 Y: 0
 Z: 0
 W: 1

 Use showdetails to show the contents of the message

The mounting point is located at 1 meter along the robot base's x-axis.

Apply Transformations

Assume now that you have a 3D point that is defined in the camera_center coordinate frame and
you want to calculate what the point coordinates in the robot_base frame are.

Use the waitForTransform function to wait until the transformation between the camera_center
and robot_base coordinate frames becomes available. This call blocks until the transform that takes
data from camera_center to robot_base is valid and available in the transformation tree.

waitForTransform(tftree, 'robot_base', 'camera_center');

Now define a point at position [3 1.5 0.2] in the camera center's coordinate frame. You will
subsequently transform this point into robot_base coordinates.

pt = rosmessage('geometry_msgs/PointStamped');
pt.Header.FrameId = 'camera_center';
pt.Point.X = 3;
pt.Point.Y = 1.5;
pt.Point.Z = 0.2;

You can transform the point coordinates by calling the transform function on the transformation
tree object. Specify what the target coordinate frame of this transformation is. In this example, use
robot_base.

tfpt = transform(tftree, 'robot_base', pt)

tfpt =
 ROS PointStamped message with properties:

 MessageType: 'geometry_msgs/PointStamped'
 Header: [1x1 Header]

1 ROS Featured Examples

1-54

 Point: [1x1 Point]

 Use showdetails to show the contents of the message

The transformed point tfpt has the following 3D coordinates.

tfpt.Point

ans =
 ROS Point message with properties:

 MessageType: 'geometry_msgs/Point'
 X: 1.2000
 Y: 1.5000
 Z: -2.5000

 Use showdetails to show the contents of the message

Besides PointStamped messages, the transform function allows you to transform other entities
like poses (geometry_msgs/PoseStamped), quaternions (geometry_msgs/QuaternionStamped),
and point clouds (sensor_msgs/PointCloud2).

If you want to store a transformation, you can retrieve it with the getTransform function.

robotToCamera = getTransform(tftree, 'robot_base', 'camera_center')

robotToCamera =
 ROS TransformStamped message with properties:

 MessageType: 'geometry_msgs/TransformStamped'
 Header: [1x1 Header]
 Transform: [1x1 Transform]
 ChildFrameId: 'camera_center'

 Use showdetails to show the contents of the message

This transformation can be used to transform coordinates in the camera_center frame into
coordinates in the robot_base frame.

robotToCamera.Transform.Translation

ans =
 ROS Vector3 message with properties:

 MessageType: 'geometry_msgs/Vector3'
 X: 1
 Y: 0
 Z: 0.5000

 Use showdetails to show the contents of the message

robotToCamera.Transform.Rotation

ans =
 ROS Quaternion message with properties:

 Access the tf Transformation Tree in ROS

1-55

 MessageType: 'geometry_msgs/Quaternion'
 X: 0
 Y: 0.7071
 Z: 0
 W: 0.7071

 Use showdetails to show the contents of the message

Send Transformations

You can also broadcast a new transformation to the ROS network.

Assume that you have a simple transformation that describes the offset of the wheel coordinate
frame relative to the robot_base coordinate frame. The wheel is mounted -0.2 meters along the y-
axis and -0.3 along the z-axis. The wheel has a relative rotation of 30 degrees around the y-axis.

Create the corresponding geometry_msgs/TransformStamped message that describes this
transformation. The source coordinate frame, wheel, is placed to the ChildFrameId property. The
target coordinate frame, robot_base, is added to the Header.FrameId property.

tfStampedMsg = rosmessage('geometry_msgs/TransformStamped');
tfStampedMsg.ChildFrameId = 'wheel';
tfStampedMsg.Header.FrameId = 'robot_base';

The transformation itself is described in the Transform property. It contains a Translation and a
Rotation. Fill in the values that are listed above.

The Rotation is described as a quaternion. To convert the 30 degree rotation around the y-axis to a
quaternion, you can use the axang2quat (Navigation Toolbox) function. The y-axis is described by
the [0 1 0] vector and 30 degrees can be converted to radians with the deg2rad function.

tfStampedMsg.Transform.Translation.X = 0;
tfStampedMsg.Transform.Translation.Y = -0.2;
tfStampedMsg.Transform.Translation.Z = -0.3;

quatrot = axang2quat([0 1 0 deg2rad(30)])

quatrot = 1×4

 0.9659 0 0.2588 0

tfStampedMsg.Transform.Rotation.W = quatrot(1);
tfStampedMsg.Transform.Rotation.X = quatrot(2);
tfStampedMsg.Transform.Rotation.Y = quatrot(3);
tfStampedMsg.Transform.Rotation.Z = quatrot(4);

Use rostime to retrieve the current system time and use that to timestamp the transformation. This
lets the recipients know at which point in time this transformation was valid.

tfStampedMsg.Header.Stamp = rostime('now');

Use the sendTransform function to broadcast this transformation.

sendTransform(tftree, tfStampedMsg)

1 ROS Featured Examples

1-56

The new wheel coordinate frame is now also in the list of available coordinate frames.

tftree.AvailableFrames

ans = 4x1 cell
 {'camera_center' }
 {'mounting_point'}
 {'robot_base' }
 {'wheel' }

The final visual representation of all four coordinate frames looks as follows.

You can see that the wheel coordinate frame has the translation and rotation that you specified in
sending the transformation.

Stop Example Publisher and Shut Down ROS Network

Stop the example transformation publisher.

exampleHelperROSStopTfPublisher

Shut down the ROS master and delete the global node.

rosshutdown

Shutting down global node /matlab_global_node_00458 with NodeURI http://bat5125win64:62996/
Shutting down ROS master on http://172.30.196.185:54698.

 Access the tf Transformation Tree in ROS

1-57

Work with Specialized ROS Messages
Some commonly used ROS messages store data in a format that requires some transformation before
it can be used for further processing. MATLAB® can help you by formatting these specialized ROS
messages for easy use. In this example, you can explore how message types for laser scans,
uncompressed and compressed images, and point clouds are handled.

Prerequisites: “Work with Basic ROS Messages” on page 1-15

Load Sample Messages

Load some sample messages. These messages are populated with data gathered from various
robotics sensors.

exampleHelperROSLoadMessages

Laser Scan Messages

Laser scanners are commonly used sensors in robotics. You can see the standard ROS format for a
laser scan message by creating an empty message of the appropriate type.

Use rosmessage to create the message.

emptyscan = rosmessage('sensor_msgs/LaserScan')

emptyscan =
 ROS LaserScan message with properties:

 MessageType: 'sensor_msgs/LaserScan'
 Header: [1x1 Header]
 AngleMin: 0
 AngleMax: 0
 AngleIncrement: 0
 TimeIncrement: 0
 ScanTime: 0
 RangeMin: 0
 RangeMax: 0
 Ranges: [0x1 single]
 Intensities: [0x1 single]

 Use showdetails to show the contents of the message

Since you created an empty message, emptyscan does not contain any meaningful data. For
convenience, the exampleHelperROSLoadMessages function loaded a laser scan message that is
fully populated and is stored in the scan variable.

Inspect the scan variable. The primary data in the message is in the Ranges property. The data in
Ranges is a vector of obstacle distances recorded at small angle increments.

scan

scan =
 ROS LaserScan message with properties:

 MessageType: 'sensor_msgs/LaserScan'
 Header: [1x1 Header]

1 ROS Featured Examples

1-58

 AngleMin: -0.5467
 AngleMax: 0.5467
 AngleIncrement: 0.0017
 TimeIncrement: 0
 ScanTime: 0.0330
 RangeMin: 0.4500
 RangeMax: 10
 Ranges: [640x1 single]
 Intensities: [0x1 single]

 Use showdetails to show the contents of the message

You can get the measured points in Cartesian coordinates using the rosReadCartesian function.

xy = readCartesian(scan);

This populates xy with a list of [x,y] coordinates that were calculated based on all valid range
readings. Visualize the scan message using the rosPlot function:

figure
plot(scan,'MaximumRange',5)

Image Messages

MATLAB also provides support for image messages, which always have the message type
sensor_msgs/Image.

 Work with Specialized ROS Messages

1-59

Create an empty image message using rosmessage to see the standard ROS format for an image
message.

emptyimg = rosmessage('sensor_msgs/Image')

emptyimg =
 ROS Image message with properties:

 MessageType: 'sensor_msgs/Image'
 Header: [1x1 Header]
 Height: 0
 Width: 0
 Encoding: ''
 IsBigendian: 0
 Step: 0
 Data: [0x1 uint8]

 Use showdetails to show the contents of the message

For convenience, the exampleHelperROSLoadMessages function loaded an image message that is
fully populated and is stored in the img variable.

Inspect the image message variable img in your workspace. The size of the image is stored in the
Width and Height properties. ROS sends the actual image data using a vector in the Data property.

img

img =
 ROS Image message with properties:

 MessageType: 'sensor_msgs/Image'
 Header: [1x1 Header]
 Height: 480
 Width: 640
 Encoding: 'rgb8'
 IsBigendian: 0
 Step: 1920
 Data: [921600x1 uint8]

 Use showdetails to show the contents of the message

The Data property stores raw image data that cannot be used directly for processing and
visualization in MATLAB. You can use the rosReadImage function to retrieve the image in a format
that is compatible with MATLAB.

imageFormatted = readImage(img);

The original image has an 'rgb8' encoding. By default, rosReadImage returns the image in a
standard 480-by-640-by-3 uint8 format. View this image using the imshow function.

figure
imshow(imageFormatted)

1 ROS Featured Examples

1-60

MATLAB® supports all ROS image encoding formats, and rosReadImage handles the complexity of
converting the image data. In addition to color images, MATLAB also supports monochromatic and
depth images.

Compressed Messages

Many ROS systems send their image data in a compressed format. MATLAB provides support for
these compressed image messages.

Create an empty compressed image message using rosmessage. Compressed images in ROS have
the message type sensor_msgs/CompressedImage and have a standard structure.

emptyimgcomp = rosmessage('sensor_msgs/CompressedImage')

emptyimgcomp =
 ROS CompressedImage message with properties:

 MessageType: 'sensor_msgs/CompressedImage'
 Header: [1x1 Header]
 Format: ''
 Data: [0x1 uint8]

 Use showdetails to show the contents of the message

 Work with Specialized ROS Messages

1-61

For convenience, the exampleHelperROSLoadMessages function loaded a compressed image
message that is already populated.

Inspect the imgcomp variable that was captured by a camera. The Format property captures all the
information that MATLAB needs to decompress the image data stored in Data.

imgcomp

imgcomp =
 ROS CompressedImage message with properties:

 MessageType: 'sensor_msgs/CompressedImage'
 Header: [1x1 Header]
 Format: 'bgr8; jpeg compressed bgr8'
 Data: [30376x1 uint8]

 Use showdetails to show the contents of the message

Similar to the image message, you can use rosReadImage to obtain the image in standard RGB
format. Even though the original encoding for this compressed image is bgr8, rosReadImage the
conversion.

compressedFormatted = readImage(imgcomp);

Visualize the image using the imshow function.

figure
imshow(compressedFormatted)

1 ROS Featured Examples

1-62

Most image formats are supported for the compressed image message type. The 16UC1 and 32FC1
encodings are not supported for compressed depth images. Monochromatic and color image
encodings are supported.

Point Clouds

Point clouds can be captured by a variety of sensors used in robotics, including LIDARs, Kinect®, and
stereo cameras. The most common message type in ROS for transmitting point clouds is
sensor_msgs/PointCloud2 and MATLAB provides some specialized functions for you to work with
this data.

You can see the standard ROS format for a point cloud message by creating an empty point cloud
message.

emptyptcloud = rosmessage('sensor_msgs/PointCloud2')

emptyptcloud =
 ROS PointCloud2 message with properties:

 PreserveStructureOnRead: 0
 MessageType: 'sensor_msgs/PointCloud2'
 Header: [1x1 Header]
 Fields: [0x1 PointField]

 Work with Specialized ROS Messages

1-63

 Height: 0
 Width: 0
 IsBigendian: 0
 PointStep: 0
 RowStep: 0
 Data: [0x1 uint8]
 IsDense: 0

 Use showdetails to show the contents of the message

View the populated point cloud message that is stored in the ptcloud variable in your workspace:

ptcloud

ptcloud =
 ROS PointCloud2 message with properties:

 PreserveStructureOnRead: 0
 MessageType: 'sensor_msgs/PointCloud2'
 Header: [1x1 Header]
 Fields: [4x1 PointField]
 Height: 480
 Width: 640
 IsBigendian: 0
 PointStep: 32
 RowStep: 20480
 Data: [9830400x1 uint8]
 IsDense: 0

 Use showdetails to show the contents of the message

The point cloud information is encoded in the Data property of the message. You can extract the
x,y,z coordinates as an N-by-3 matrix by calling the rosReadXYZ function.

xyz = readXYZ(ptcloud)

xyz = 307200x3 single matrix

 NaN NaN NaN
 NaN NaN NaN
 NaN NaN NaN
 NaN NaN NaN
 NaN NaN NaN
 NaN NaN NaN
 NaN NaN NaN
 NaN NaN NaN
 NaN NaN NaN
 NaN NaN NaN
 ⋮

NaN in the point cloud data indicates that some of the x,y,z values are not valid. This is an artifact of
the Kinect® sensor, and you can safely remove all NaN values.

xyzvalid = xyz(~isnan(xyz(:,1)),:)

xyzvalid = 193359x3 single matrix

1 ROS Featured Examples

1-64

 0.1378 -0.6705 1.6260
 0.1409 -0.6705 1.6260
 0.1433 -0.6672 1.6180
 0.1464 -0.6672 1.6180
 0.1502 -0.6705 1.6260
 0.1526 -0.6672 1.6180
 0.1556 -0.6672 1.6180
 0.1587 -0.6672 1.6180
 0.1618 -0.6672 1.6180
 0.1649 -0.6672 1.6180
 ⋮

Some point cloud sensors also assign RGB color values to each point in a point cloud. If these color
values exist, you can retrieve them with a call to rosReadRGB.

rgb = readRGB(ptcloud)

rgb = 307200×3

 0.8392 0.7059 0.5255
 0.8392 0.7059 0.5255
 0.8392 0.7137 0.5333
 0.8392 0.7216 0.5451
 0.8431 0.7137 0.5529
 0.8431 0.7098 0.5569
 0.8471 0.7137 0.5569
 0.8549 0.7098 0.5569
 0.8588 0.7137 0.5529
 0.8627 0.7137 0.5490
 ⋮

You can visualize the point cloud with the scatter3 function. scatter3 automatically extracts the
x,y,z coordinates and the RGB color values (if they exist) and show them in a 3-D scatter plot. The
scatter3 function ignores all NaN x,y,z coordinates, even if RGB values exist for that point.

figure
scatter3(ptcloud)

 Work with Specialized ROS Messages

1-65

1 ROS Featured Examples

1-66

Work with Velodyne ROS Messages
Velodyne ROS messages store data in a format that requires some interpretation before it can be
used for further processing. MATLAB® can help you by formatting Velodyne ROS messages for easy
use. In this example, you can explore how VelodyneScan messages from a Velodyne LiDAR are
handled.

Prerequisites: “Work with Basic ROS Messages” on page 1-15

Load Sample Messages

Load sample Velodyne messages. These messages are populated with data gathered from Velodyne
LiDAR sensor.

load('lidarData_ConstructionRoad.mat')

VelodyneScan Messages

VelodyneScan messages are ROS messages that contain Velodyne LIDAR scan packets. You can see
the standard ROS format for a VelodyneScan message by creating an empty message of the
appropriate type.

emptyveloScan = rosmessage('velodyne_msgs/VelodyneScan')

emptyveloScan =
 ROS VelodyneScan message with properties:

 MessageType: 'velodyne_msgs/VelodyneScan'
 Header: [1x1 Header]
 Packets: [0x1 VelodynePacket]

 Use showdetails to show the contents of the message

Since you created an empty message, emptyveloScan does not contain any meaningful data. For
convenience, the loaded lidarData_ConstructionRoad.mat filecontains a set of VelodyneScan
messages that is fully populated and is stored in the msgs variable. Each element in the msgs cell
array is a VelodyneScan ROS message struct. The primary data in each VelodyneScan message is
in the Packets property, it contains multiple VelodynePacket messages. You can see the standard
ROS format for a VelodynePacket message by creating an empty message of the appropriate type.

emptyveloPkt = rosmessage('velodyne_msgs/VelodynePacket')

emptyveloPkt =
 ROS VelodynePacket message with properties:

 MessageType: 'velodyne_msgs/VelodynePacket'
 Stamp: [1x1 Time]
 Data: [1206x1 uint8]

 Use showdetails to show the contents of the message

 Work with Velodyne ROS Messages

1-67

Create Velodyne ROS Message Reader

The velodyneROSMessageReader object reads point cloud data from VelodyneScan ROS
messages based on their specified model type. Note that providing an incorrect device model may
result in improperly calibrated point clouds. This example uses messages from the 'HDL32E' model.

veloReader = velodyneROSMessageReader(msgs,'HDL32E')

veloReader =
 velodyneROSMessageReader with properties:

 VelodyneMessages: {28x1 cell}
 DeviceModel: 'HDL32E'
 CalibrationFile: 'B:\matlab\toolbox\shared\pointclouds\utilities\velodyneFileReaderConfiguration\HDL32E.xml'
 NumberOfFrames: 55
 Duration: 2.7477 sec
 StartTime: 1145.2 sec
 EndTime: 1147.9 sec
 Timestamps: [1x55 duration]
 CurrentTime: 1145.2 sec

Extract Point Clouds

You can extract point clouds from the raw packets message with the help of this
velodyneROSMessageReader object. By providing a specific frame number or timestamp, one point
cloud can be extracted from velodyneROSMessageReader object using the readFrame object
function. If you call readFrame without a frame number or timestamp, it extracts the next point
cloud in the sequence based on the CurrentTime property.

Create a duration scalar that represents one second after the first point cloud reading.

timeDuration = veloReader.StartTime + duration(0,0,1,'Format','s');

Read the first point cloud recorded at or after the given time duration.

ptCloudObj = readFrame(veloReader,timeDuration);

Access Location data in the point cloud.

ptCloudLoc = ptCloudObj.Location;

Reset the CurrentTime property of veloReader to the default value

reset(veloReader)

Display All Point Clouds

You can also loop through all point clouds in the input Velodyne ROS messages.

Define x-, y-, and z-axes limits for pcplayer in meters. Label the axes.

xlimits = [-60 60];
ylimits = [-60 60];
zlimits = [-20 20];

Create the point cloud player.

player = pcplayer(xlimits,ylimits,zlimits);

1 ROS Featured Examples

1-68

Label the axes.

xlabel(player.Axes,'X (m)');
ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');

The first point cloud of interest is captured at 0.3 second into the input messages. Set the
CurrentTime property to that time to begin reading point clouds from there.

veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);

Display the point cloud stream for 2 seconds. To check if a new frame is available and continue past 2
seconds, remove the last while condition. Iterate through the file by calling readFrame to read in
point clouds. Display them using the point cloud player.

while(hasFrame(veloReader) && isOpen(player) && (veloReader.CurrentTime < veloReader.StartTime + seconds(2)))
 ptCloudObj = readFrame(veloReader);
 view(player,ptCloudObj.Location,ptCloudObj.Intensity);
 pause(0.1);
end

 Work with Velodyne ROS Messages

1-69

Get Started with a Real TurtleBot
This example shows how to connect to a TurtleBot® using the MATLAB® ROS interface. You can use
this interface to connect to a wide range of ROS-supported hardware from MATLAB. If you are using
a TurtleBot in Gazebo® refer to the “Get Started with Gazebo and a Simulated TurtleBot” on page 1-
129 example.

Set Up New TurtleBot Hardware

The following steps use the TurtleBot 3 Waffle Pi platform (https://www.turtlebot.com/). The kit comes
with a Raspberry Pi that has a pre-installed copy of ROS with the appropriate TurtleBot software.
This procedure assumes that you are using a new TurtleBot of similar configuration. If you are
already using a TurtleBot and communicating with it through an external computer, do not perform
this procedure.

1 ROS Featured Examples

1-70

https://www.turtlebot.com/

 Get Started with a Real TurtleBot

1-71

• Unpack the TurtleBot and make sure the power source is connected.
• Turn on the Raspberry Pi.
• Make sure that you have a network set up to connect the host computer (the one with MATLAB) to

the Raspberry Pi on this TurtleBot. Use a wireless router or an Ethernet cable.
• Open a terminal on the Raspberry Pi and run ifconfig. The IP address associated with the

network that you connected to is displayed.

• Set the appropriate environment variables on the TurtleBot by executing the following commands.
Execute these command only once.

echo export ROS_IP=IP_OF_TURTLEBOT >> ~/.bashrc
echo export ROS_MASTER_URI=http://IP_OF_TURTLEBOT:11311 >> ~/.bashrc
sudo sh -c 'echo export ROS_IP=IP_OF_TURTLEBOT >> /etc/ros/setup.sh'

Make sure that you can ping the host machine from the Raspberry Pi:

ping IP_OF_HOST_COMPUTER

A successful ping is shown on the left. An unsuccessful ping is shown on the right.

1 ROS Featured Examples

1-72

Note: These environment variables must always have the correct IP address assigned to the
TurtleBot. If the IP address of the TurtleBot Raspberry Pi changes, you must also change the
environment variables using the preceding commands.

Here is a diagram illustrating the proper assignment of environment variables:

 Get Started with a Real TurtleBot

1-73

Type the following commands in separate terminals on the TurtleBot Raspberry Pi to launch LiDAR
and camera sensors in TurtleBot 3:

roslaunch turtlebot3_bringup turtlebot3_core.launch
roslaunch turtlebot3_bringup turtlebot3_lidar.launch
roslaunch turtlebot3_bringup turtlebot3_rpicamera.launch

A possible output is shown below.

1 ROS Featured Examples

1-74

Set Up Existing TurtleBot Hardware

If you have a TurtleBot with a different setup from the setup previously described, before trying to
communicate through MATLAB make sure that the following information is true:

• You have set up your network so that you can ping the host machine.
• You have access to the following topics. On the TurtleBot Raspberry Pi, type rostopic list to

see the topics.

/odom
/cmd_vel
/reset
/scan

Host Computer Setup

• On the network, find the IP address of your host computer. On a Windows® machine, at the
command prompt, type ipconfig. On a Mac or Linux® machine, open a terminal and type
ifconfig. Here is an example of ipconfig:

 Get Started with a Real TurtleBot

1-75

Make sure that you can ping the notebook:

ping IP_OF_TURTLEBOT

A successful ping is shown first, followed by an unsuccessful ping.

1 ROS Featured Examples

1-76

Next Steps

• Refer to the next example: “Communicate with the TurtleBot” on page 1-157

 Get Started with a Real TurtleBot

1-77

Get Started with ROS in Simulink®
This example shows how to use Simulink blocks for ROS to send and receive messages from a local
ROS network.

Introduction

Simulink support for Robot Operating System (ROS) enables you to create Simulink models that work
with a ROS network. ROS is a communication layer that allows different components of a robot
system to exchange information in the form of messages. A component sends a message by
publishing it to a particular topic, such as /odometry. Other components receive the message by
subscribing to that topic.

Simulink support for ROS includes a library of Simulink blocks for sending and receiving messages
for a designated topic. When you simulate the model, Simulink connects to a ROS network, which can
be running on the same machine as Simulink or on a remote system. Once this connection is
established, Simulink exchanges messages with the ROS network until the simulation is terminated.
If Simulink Coder™ is installed, you can also generate C++ code for a standalone ROS component, or
node, from the Simulink model.

This example shows how to:

• Set up the ROS environment
• Create and run a Simulink model to send and receive ROS messages
• Work with data in ROS messages

Prerequisites: “Create a Simple Model” (Simulink), “Get Started with ROS” on page 1-2

Model

You will use Simulink to publish the X and Y location of a robot. You will also subscribe to the same
location topic and display the received X,Y location.

Enter the following command to open the completed model created in example.

open_system('robotROSGetStartedExample');

Initialize ROS

Every ROS network has a ROS master that coordinates all the parts of the ROS network. For this
example, use MATLAB® to create a ROS master on your local system. Simulink automatically detects
and uses the local ROS master.

On the MATLAB command line, execute the following:

rosinit

Create a Publisher

Configure a block to send a geometry_msgs/Point message to a topic named /location (the "/"
is standard ROS syntax).

• From the MATLAB Toolstrip, select Home > Simulink to open Simulink Start Page.
• On Simulink Start Page, under Simulink, click Blank Model to create and open a new Simulink

Model.

1 ROS Featured Examples

1-78

matlab:robotROSGetStartedExample

• From the Simulink Toolstrip, select Simulation > Library Browser to open the Simulink Library
Browser. Click on the ROS Toolbox tab (you can also type roslib in MATLAB command window).
Select the ROS Library.

• Drag a Publish block to the model. Double-click on the block to configure the topic and message
type.

• Select Specify your own for the Topic source, and enter /location in Topic.
• Click Select next to Message type. A pop-up window will appear. Select geometry_msgs/Point

and click OK to close the pop-up window.

 Get Started with ROS in Simulink®

1-79

1 ROS Featured Examples

1-80

Create a ROS Message

Create a blank ROS message and populate it with the X and Y location for the robot path. Then
publish the updated ROS message to the ROS network.

A ROS message is represented as a bus signal in Simulink. A bus signal is a bundle of Simulink
signals, and can also include other bus signals (see the “Explore Simulink Bus Capabilities”
(Simulink) example for an overview). The ROS Blank Message block outputs a Simulink bus signal
corresponding to a ROS message.

• Click ROS Toolbox tab in the Library Browser, or type roslib at the MATLAB command line.
Select the ROS Library.

• Drag a Blank Message block to the model. Double-click on the block to open the block mask.
• Click on Select next to the Message type box, and select geometry_msgs/Point from the

resulting pop-up window. Click OK to close the block mask.
• From the Simulink > Signal Routing tab in the Library Browser, drag a Bus Assignment block.
• Connect the output port of the Blank Message block to the Bus input port of the Bus

Assignment block. Connect the output port of the Bus Assignment block to the input port of
ROS Publish block.

• Double-click on the Bus Assignment block. You should see X, Y and Z (the signals comprising a
geometry_msgs/Point message) listed on the left. Select ??? signal1 in the right listbox and
click Remove. Select both X and Y signals in the left listbox and click Select. Click OK to apply
changes.

 Get Started with ROS in Simulink®

1-81

NOTE: If you do not see X, Y and Z listed, close the block mask for the Bus Assignment block, and
under the Modeling tab, click Update Model to ensure that the bus information is correctly
propagated. If you see the error, "Selected signal 'signal1' in the Bus Assignment block cannot be
found", it indicates that the bus information has not been propagated. Close the Diagnostic Viewer,
and repeat the above step.

You can now populate the bus signal with the robot location.

• From the Simulink > Sources tab in the Library Browser, drag two Sine Wave blocks into the
model.

• Connect the output ports of each Sine Wave block to the assignment input ports X and Y of the
Bus Assignment block.

• Double-click on the Sine Wave block that is connected to input port X. Set the Phase parameter
to -pi/2 and click OK. Leave the Sine Wave block connected to input port Y as default.

Your publisher should look like this:

At this point, the model is set up to publish messages to the ROS network. You can verify this as
follows:

• Under the Simulation tab, set the simulation stop time to inf.
• Click Run to start simulation. Simulink creates a dedicated ROS node for the model and a ROS

publisher corresponding to the Publish block.
• While the simulation is running, type rosnode list in the MATLAB command window. This lists

all the nodes available in the ROS network, and includes a node with a name like /
untitled_81473 (the name of the model along with a random number to make it unique).

• While the simulation is running, type rostopic list in the MATLAB command window. This lists
all the topics available in the ROS network, and it includes /location.

1 ROS Featured Examples

1-82

Observe that the base MATLAB workspace has one or more variables whose name starts with
SL_Bus_. These are temporary bus objects created by Simulink and should not be modified. However,
it is safe to clear them from the workspace, as they will be re-created if needed.

• Click Stop to stop the simulation. Simulink deletes the ROS node and ROS publisher. In general,
the ROS node for a model and any associated publishers and subscribers are automatically
deleted at the end of a simulation; no additional clean-up steps are required.

Create a Subscriber

Use Simulink to receive messages sent to the /location topic. You will extract the X and Y location
from the message and plot it in the XY-plane.

• From the ROS Toolbox tab in the Library Browser, drag a Subscribe block to the model. Double-
click on the block.

• Select Specify your own in the Topic source box, and enter /location in the Topic box.
• Click Select next to the Message type box, and select geometry_msgs/Point from the pop-up

window. Click OK to close the block mask.

The Subscribe block outputs a Simulink bus signal, so you need to extract the X and Y signals from
it.

• From the Simulink > Signal Routing tab in the Library Browser, drag a Bus Selector block to
the model.

• Connect the Msg output of the Subscribe block to the input port of the Bus Selector block.
• From the Modeling tab, select Update Model to ensure that the bus information is propagated.

You may get an error, "Selected signal 'signal1' in the Bus Selector block 'untitled/Bus Selector'
cannot be found in the input bus signal". This error is expected, and will be resolved by the next
step.

• Double-click on the Bus Selector block. Select ??? signal1 and ??? signal2 in the right
listbox and click Remove. Select both X and Y signals in the left listbox and click Select. Click
OK.

The Subscribe block will output the most-recently received message for the topic on every time step.
The IsNew output indicates whether the message has been received during the prior time step. For
the current task, the IsNew output is not needed, so do the following:

• From the Simulink > Sinks tab in the Library Browser, drag a Terminator block to the model.
• Connect the IsNew output of the Subscribe block to the input of the Terminator block.

The remaining steps configure the display of the extracted X and Y signals.

• From the Simulink > Sinks tab in the Library Browser, drag an XY Graph block to the model.
Connect the output ports of the Bus Selector block to the input ports of the XY Graph block.

 Get Started with ROS in Simulink®

1-83

• From the Simulink > Sinks tab in the Library Browser, drag two Display blocks to the model.
Connect each output of the Bus Selector block to each Display block.

• Save your model.

Your entire model should look like this:

Configure and Run the Model

• From the Modeling tab, select Model Settings. In the Solver pane, set Type to Fixed-step and
Fixed-step size to 0.01.

• Set simulation stop time to 10.0.
• Click Run to start simulation. An XY plot will appear.

1 ROS Featured Examples

1-84

The first time you run the model in Simulink, the XY plot may look more jittery than the one above
due to delays caused by loading ROS libraries. Once you rerun the simulation a few times, the plot
should look smoother.

Note that the simulation does not work in actual or "real" time. The blocks in the model are
evaluated in a loop that only simulates the progression of time, and is not intended to track actual
clock time (for details, see “Simulation Loop Phase” (Simulink)).

Modify the Model to React Only to New Messages

In the above model, the Subscribe block outputs a message (bus signal) on every time step; if no
messages have been received at all, it outputs a blank message (i.e., a message with zero values).
Consequently, the XY coordinates are initially plotted at (0,0).

In this task, you will modify the model to use an Enabled Subsystem, so that it plots the location
only when a new message is received (for more information, see “Using Enabled Subsystems”
(Simulink)). A pre-configured model is included for your convenience.

• In the model, click and drag to select the Bus Selector block and XY Graph blocks. Right-click
on the selection and select Create Subsystem from Selection.

• From the Simulink > Ports & Subsystems tab in the Library Browser, drag an Enable block
into the newly-created subsystem.

• Connect the IsNew output of the Subscribe block to the enabled input of the subsystem as shown
in the picture below. Delete the Terminator block. Note that the IsNew output is true only if a
new message was received during the previous time step.

 Get Started with ROS in Simulink®

1-85

matlab:robotROSGetStartedExample

• Save your model.
• Click Run to start simulation. You should see the following XY plot.

The blocks in the enabled subsystem are only executed when a new ROS message is received by the
Subscribe block. Hence, the initial (0,0) value will not be displayed in the XY plot.

1 ROS Featured Examples

1-86

Work with ROS Messages in Simulink®
This example illustrates how to work with complex ROS messages in Simulink, such as messages with
nested sub-messages and variable-length arrays.

Introduction

In ROS Simulink Models, bus signals represent ROS Messages. Each field of a ROS message is
corresponds to a field in a Simulink bus, with the following limitations:

• Constants are not supported, and are excluded from the Simulink bus.
• 64-bit Integers (ROS types int64 and uint64) convert to doubles in the Simulink bus, as

Simulink does not natively support 64-bit integer datatypes.
• Variable-length arrays (ROS type ...[]) convert to fixed-length array with customizable

maximum lengths. By default, the fixed length is 128 for primitive types (e.g., uint8[],
float32[]), and 16 for nested arrays of messages (e.g., geometry_msgs/Point[]).

• Strings (ROS type string) convert to fixed-length uint8 arrays with customizable maximum
lengths, with a default maximum length of 128 characters.

• String arrays (ROS type string[]) convert to a fixed-length array of std_msgs/String with a
customizable maximum length. The default maximum length is 16 strings.

When a Simulink bus converts to a ROS message, the message fields restore to their native ROS
types. For example, the ROS message type std_msgs/Header has a field, FrameId, which is a
string. In the corresponding Simulink bus, the FrameId field is a uint8 array. When the bus converts
to a ROS message, FrameId converts back to a string.

Model

The following model has several examples of working with complex ROS messages in Simulink. The
rest of the tasks in this example focus on specific scenarios.

open_system('robotROSMessageUsageExample');

Access Data in a Variable-length Array

A ROS message can have arrays whose length (number of elements) cannot be pre-determined. For
example, the Position field in a sensor_msgs/JointState message is a variable-length array of
64-bit floats. In any given sensor_msgs/JointState message, the Position array can have no
elements or it can have an arbitrarily large number of elements. In Simulink, such arrays are
required to have a maximum length.

Open the example model and explore how variable-length arrays in ROS messages are handled in
Simulink in the following steps.

open_system('robotROSMessageUsageExample/Work with Variable-length Arrays');

• Double-click the Work with Variable-length Arrays subsystem. Note that the Subscribe block
is configured to receive messages sent to topic /my_joint_topic as message type,
sensor_msgs/JointState.

• Under the Modeling tab, click Update Model.
• Double-click on the Bus Selector block. There are three variable-length arrays in the message

(Position, Velocity, and Effort).

 Work with ROS Messages in Simulink®

1-87

matlab:robotROSMessageUsageExample
matlab:robotROSMessageUsageExample

• Observe that there is a Position_SL_Info field in the bus.
Position_SL_Info.ReceivedLength holds the length of the Position array in the original
received ROS message. This value can be arbitrarily large. Position_SL_Info.CurrentLength
holds the length of the Position array in the Simulink bus signal. This can vary between 0 and
the maximum length of the array (128, in this case).

Configure ROS Network

• Under the Simulation tab, select ROS Network from the Prepare section. If you do not see ROS
Toolbox, select Robot Operating System (ROS) on the Apps tab, under Control Systems. In the
dialog box that opens up, select Robot Operating System (ROS) from the ROS Network drop-
down.

• Set the Network Address for both ROS Master (ROS 1) and Node Host (ROS 1) to Default.

1 ROS Featured Examples

1-88

• Enter rosinit at the MATLAB® command line.

Run Simulation

• Under the Simulation tab, set Stop Time to Inf, and click Play to start simulation.
• Execute the following at the MATLAB command line.

[pub, msg] = rospublisher('/my_joint_state', 'sensor_msgs/JointState');
msg.Position = [11:2:25]; % array of length 8
send(pub, msg);

• Observe the Display outputs in the Work with Variable-length Arrays subsystem. Note that
Current Length and Received Length are equal.

• Execute the following at the MATLAB command line.

msg.Position = 1:130; % array of length 130
send(pub, msg);

• Observe that a warning is emitted, indicating that a truncation has happened. The Received
Length is now 130 and Current Length is 128.

• Under the Debug tab, select Diagnostics > Diagnostic Viewer. Warnings are typically routed
here to the Simulink Diagnostic Viewer (see “View Diagnostics” (Simulink)).

Modify Maximum Size of a Variable-length Array

Change the maximum size of a variable-length array in Simulink. The default maximum of the
Position array in the sensor_msgs/JointState message type is 128. You will change this limit
to 256.

• Open the example model, and double-click on the Work with Variable-length Arrays subsystem.

 Work with ROS Messages in Simulink®

1-89

matlab:robotROSMessageUsageExample

• From the Simulation tab, select ROS Toolbox > Variable Size Messages.
• From the list box on the left, click on sensor_msgs/JointState. Then, unselect the Use

default limits for this message type checkbox. Finally, enter the new value (256) in the row for
the Position array property, and click OK to close the dialog.

• Click Play to start simulation.
• Run the following at the MATLAB command line. Observe that a warning is not emitted in the

Diagnostic Viewer.

msg.Position = 1:200; % array of length 200
send(pub, msg);

• Run the following at the MATLAB command line. Observe that a warning is emitted in the
Diagnostic Viewer.

msg.Position = 1:300; % array of length 300
send(pub, msg);

• Close the model without saving.

Note:

• The maximum size information applies to all instances of the sensor_msgs/JointState
message type. For example, if other messages used in the model include a sensor_msgs/
JointState message, the updated limit of 256 will apply to all those nested instances as well.

1 ROS Featured Examples

1-90

• The maximum size information is specific to the model, and is saved with the model. You can have
two models open that use sensor_msgs/JointState, with one model using the default limit of
128, and another using a custom limit of 256.

Work with Messages Using MATLAB Function Block

The Bus Assignment block in Simulink does not support assigning to an element inside an array of
buses.

For example, a geometry_msgs/PoseArray message has a Poses property, which is required to be
an array of geometry_msgs/Pose messages. If you want to assign to specific elements of the Poses
array, that is not possible with the Bus Assignment block.

Explore how to use the MATLAB Function block for advanced message manipulation such as
assignment of nested messages.

• Open the example model. Select the Work with Nested Arrays of Messages subsystem and
copy.

• Open a new Simulink model. Paste and save the new model to a temporary location, with the name
FunctionTest.slx.

• Close all models, and clear the base workspace by typing clear in the MATLAB command line.

Configure the MATLAB Assign Block

• Open the FunctionTest.slx model, double-click on the Work with Nested Arrays of Messages
subsystem, and open the MATLAB Function - Assign block. Observe that it uses MATLAB
notation to assign values inside a nested array.

• The Function Block requires the datatype of bus outputs (in this case, msg) to be explicitly
specified. Create all buses required for this model by typing the following at the MATLAB
command line. Note that the bus objects are created in the MATLAB workspace using the name
SL_Bus_<modelname>_<messageType>. (This may be abbreviated if the model name is too
long.)

ros.createSimulinkBus(gcs)

• Double-click the MATLAB Function - Assign block. In the MATLAB Editor, click Edit Data. In
Ports and Data Manager, select msg, and set its type to
SL_Bus_FunctionTest_geometry_msgs_PoseArray. Click Apply and close Ports and Data
Manager.

• If you do not see SL_Bus_FunctionTest_geometry_msgs_PoseArray listed as an option in
the Type dropdown, select Refresh data types.

 Work with ROS Messages in Simulink®

1-91

matlab:robotROSMessageUsageExample

Configure the ROS Network

• Under the Simulation tab, select ROS Toolbox > ROS Network.
• Set the Network Address for both ROS Master (ROS 1) and Node Host (ROS 1) to Default.
• Enter rosinit at the MATLAB command line.

Run Simulation

• Under the Simulation tab, set Stop Time to 1.0, and click Play to run the simulation. Verify that
the values in the Display blocks are equal to pi/2 and pi/2 + 1.

• The ros.createSimulinkBus(gcs) statement has to be re-run each time the model is loaded
or if the workspace is cleared. To avoid these issues, include this statement in the InitFcn callback
for the model (see “Model Callback Parameters” (Simulink)).

1 ROS Featured Examples

1-92

Work with String Arrays

A string array in a ROS message is represented in Simulink as an array of std_msgs/String
messages. Each std_msgs/String message has a Data property that has the actual characters in
the string. Each string is represented as an array of uint8 values.

By default, the maximum number of std_msgs/String messages in a string array is 16, and the
maximum length of an individual string is 128 characters. The following steps show how to change
these defaults:

Open the example model, and double-click the Work with Strings and String Arrays subsystem.

Change Maximum Array Lengths

• From the Simulation tab, select ROS Toolbox > Variable Size Messages.
• In the Message types in model column, click on the sensor_msgs/JointState entry. Observe

that the right-hand pane shows a Name property that is an array of std_msgs/String, with a
maximum length of 16. To change the maximum number of strings in Name, deselect the Use
default limits for this message type checkbox and enter the desired value.

• In the Message types in model column, click on the std_msgs/String entry. Observe that the
right-hand pane shows a Data property that is an array of uint8, with a maximum length of 128.
To change the maximum length of the string, deselect the Use default limits for this message
type checkbox and enter the desired value.

• Once you change the default values, open the Work with Strings and String Arrays subsystem
and simulate the model. The Display blocks should now reflect the updated maximum values.

Note: The maximum length of Data applies to all instances of std_msgs/String in the model. For
example, the Blank String block in Work with Strings and String Arrays subsystem uses a
std_msgs/String message, so these messages would inherit the updated maximum length.
Likewise, if the model has another ROS message type with a string array property, the individual
strings in that array will also inherit the updated maximum length.

 Work with ROS Messages in Simulink®

1-93

matlab:robotROSMessageUsageExample

Connect to a ROS-enabled Robot from Simulink®
You can use Simulink to connect to a ROS-enabled physical robot or to a ROS-enabled robot simulator
such as Gazebo. This example shows how to configure Simulink to connect to a separate robot
simulator using ROS. It then shows how to send velocity commands and receive position information
from a simulated robot.

You can follow the steps in the example to create your own model, or you can use this completed
version instead.

open_system('robotROSConnectToRobotExample');

Prerequisites: “Get Started with ROS” on page 1-2, “Exchange Data with ROS Publishers and
Subscribers” on page 1-25, “Get Started with ROS in Simulink®” on page 1-78.

Robot Simulator

Start a ROS-based simulator for a differential-drive robot. The simulator receives and sends messages
on the following topics:

• Sends nav_msgs/Odometry messages to the /odom topic
• Receives geometry_msgs/Twist velocity command messages on the /mobile_base/commands

or /cmd_vel topic, based on the ROS-based simulator

You can choose one of two options for setting up the ROS-based simulator.

Option A: Simulator in MATLAB®

Use a simple MATLAB-based simulator to plot the current location of the robot in a separate figure
window.

• Enter rosinit at the MATLAB command line. This creates a local ROS master with network
address (URI) of http://localhost:11311.

• Enter ExampleHelperSimulinkRobotROS to start the Robot Simulator:

1 ROS Featured Examples

1-94

http://gazebosim.org/
matlab:robotROSConnectToRobotExample

• Note: The geometry_msgs/Twist velocity command messages are received on the /
mobile_base/commands/velocity topic.

Option B: Gazebo Simulator

Use a simulated TurtleBot® in Gazebo.

• See “Add, Build, and Remove Objects in Gazebo” on page 1-135 for instructions on setting up the
Gazebo environment. In the Ubuntu® desktop in the virtual machine, click the "Gazebo Empty"
icon.

• Note the network address (URI) of the ROS master. It will look like http://
192.168.84.128:11311, but with your specific IP address.

• Verify that the Gazebo environment is properly set up by typing the rostopic list in the Ubuntu
terminal window. You should see a list of topics, including /cmd_vel and /odom.

• Note: The geometry_msgs/Twist velocity command messages are received on the /cmd_vel
topic.

Configure Simulink to Connect to the ROS Network

1. From the Simulation tab, select ROS Toolbox > ROS Network.

 Connect to a ROS-enabled Robot from Simulink®

1-95

2. In the ROS Master (ROS 1) section, select Custom from the Network Address dropdown.

• Option A (MATLAB Simulator): Ensure that the Hostname/IP Address is set to localhost, and
Port is set to 11311.

• Option B (Gazebo Simulator): Specify the IP address and port number of the ROS master in
Gazebo. For example, if it is http://192.168.60.165:11311, then enter 192.168.60.165 in
the Hostname/IP address box and 11311 in the Port box.

Send Velocity Commands To the Robot

Create a publisher that sends control commands (linear and angular velocities) to the simulator.
Make these velocities adjustable by using Slider Gain blocks.

ROS uses a right-handed coordinate system, so X-axis is forward, Y-axis is left, and Z-axis is up.
Control commands are sent using a geometry_msgs/Twist message, where Linear.X indicates
linear forward velocity (in m/s), and Angular.Z indicates angular velocity around the Z-axis (in
rad/s).

1 ROS Featured Examples

1-96

Configure a Publisher Block

1 Open a new Simulink model.
2 From the ROS Toolbox > ROS tab in the Library Browser, drag a Publish block to the model.

Double-click the block.
3 Set Topic source field to Select From ROS network. Select a topic based on the simulator as

shown below.

• Option A (MATLAB Simulator): Click Select next to Topic, select /mobile_base/commands/
velocity, and click OK. Note that the message type (geometry_msgs/Twist) is set
automatically.

• Option B (Gazebo Simulator): Click Select next to Topic, select /cmd_vel, and click OK. Note
that the message type (geometry_msgs/Twist) is set automatically.

Configure a Message Block

1 From the ROS Toolbox > ROS tab in the Library Browser, drop a Blank Message block to the
model. Double-click the block.

2 Click Select next to Message type and select geometry_msgs/Twist.
3 Set Sample time to 0.01 and click OK.

Configure Message Inputs

1 From the Simulink > Signal Routing tab in the Library Browser, drag a Bus Assignment
block to the model.

2 Connect the Msg output of the Blank Message block to the Bus input of the Bus Assignment
block, and the Bus output to the Msg input of the Publish block.

3 From the Modeling tab, click Update Model to ensure that the bus information is correctly
propagated. Ignore the error, "Selected signal 'signal1' in the Bus Assignment block 'untitled/Bus
Assignment' cannot be found in the input bus signal", if it appears. The next step will resolve this
error.

4 Double-click the Bus Assignment block. Select ??? signal1 in the right list box and click
Remove. In the left list box, expand both Linear and Angular properties. Select Linear > X and
Angular > Z and click Select. Click OK to close the block mask.

 Connect to a ROS-enabled Robot from Simulink®

1-97

• Add a Constant block, a Gain block, and two Slider Gain blocks. Connect them together as
shown in the figure, and set the Gain value to -1.

• Set the limits and current parameters of the linear velocity slider to 0.0 to 2.0, and 1.0
respectively. Set the corresponding parameters of the steering gain slider to -1.0 to 1.0, and
0.1.

1 ROS Featured Examples

1-98

Receive Location Information from the Robot

Create a subscriber to receive messages sent to the /odom topic. Extract the location of the robot and
plot it's path in the XY-plane.

Configure a Subscriber block

1 From the ROS Toolbox > ROS tab in the Library Browser, drag a Subscribe block to the model.
Double-click the block.

2 Set Topic source to Select From ROS network, and click Select next to the Topic box. Select
"/odom" for the topic and click OK. Note that the message type nav_msgs/Odometry is set
automatically.

Read Message Output

1 From the Simulink > Signal Routing tab in the Library Browser, drag a Bus Selector block to
the model.

2 Connect the output port of the Subscribe block to the input port of the Bus Selector block. In
the Modeling tab, click Update Model to ensure that the bus information is correctly
propagated.

3 Double-click the Bus Selector block. Select ??? signal1 and ??? signal2 in the right listbox
and click Remove. In the left listbox, expand Pose > Pose > Position and select X and Y. Click
Select and then OK.

4 From the Simulink > Sinks tab in the Library Browser, drag an XY Graph block to the model.
Connect the X and Y output ports of the Bus Selector block to the input ports of the XY Graph
block.

 Connect to a ROS-enabled Robot from Simulink®

1-99

This figure shows the completed model. A pre-configured model is included for your convenience.

• Note: The Publisher block in this model uses the /mobile_base/commands/velocity topic for
use with MATLAB simulator option. For Gazebo simulator option, select the /cmd_vel topic as
shown above on page 1-0 .

1 ROS Featured Examples

1-100

matlab:robotROSConnectToRobotExample

Configure and Run the Model

1 From the Modeling tab, click Model Settings. In the Solver pane, set Type to Fixed-step and
Fixed-step size to 0.01.

2 Set simulation Stop time to Inf.
3 Click Run to start the simulation.
4 In both the simulator and XY plot, you should see the robot moving in a circle.
5 While the simulation is running, change the values of Slider Gain blocks to control the robot.

Double-click the XY Graph block and change the X and Y axis limits if needed. (You can do this
while the simulation is running.)

6 To stop the simulation, click Stop.

 Connect to a ROS-enabled Robot from Simulink®

1-101

Feedback Control of a ROS-Enabled Robot
Use Simulink® to control a simulated robot running in a separate ROS-based simulator.

This example involves a model that implements a simple closed-loop proportional controller. The
controller receives location information from a simulated robot (running in a separate ROS-based
simulator) and sends velocity commands to drive the robot to a specified location. Adjust parameters
while the model is running and observe the effect on the simulated robot.

The following figure summarizes the interaction between Simulink and the robot simulator (the
arrows in the figure indicate ROS message transmission). The /odom topic conveys location
information, and the /mobile_base/commands/velocity topic conveys velocity commands.

Start a Robot Simulator and Configure Simulink

Follow the steps in the “Connect to a ROS-enabled Robot from Simulink®” on page 1-94 example to
do the following:

• Start a MATLAB® or Gazebo® robot simulator.
• Configure Simulink to connect to the ROS network.

Open Existing Model

After connecting to the ROS network, open the example model.

open_system('robotROSFeedbackControlExample.slx');

The model implements a proportional controller for a differential-drive mobile robot. At each time
step, the algorithm orients the robot toward the desired location and drives it forward. Once the
desired location is reached, the algorithm stops the robot.

1 ROS Featured Examples

1-102

matlab:robotROSFeedbackControlExample

open_system('robotROSFeedbackControlExample/Proportional Controller');

Note that there are four tunable parameters in the model (indicated by colored blocks).

• Desired Position (at top level of model): The desired location in (X,Y) coordinates
• Distance Threshold: The robot stops if it is closer than this distance from the desired location
• Linear Velocity: The forward linear velocity of the robot
• Gain: The proportional gain when correcting the robot orientation

The model also has a Simulation Rate Control block (at top level of model). This block ensures that
the simulation update intervals follow wall-clock elapsed time.

Run the Model

Run the model and observe the behavior of the robot in the robot simulator.

• Position windows on your screen so that you can observe both the Simulink model and the robot
simulator.

• Click Play to start simulation.
• While the simulation is running, double-click the Desired Position block and change the

Constant value to [2 3]. Observe that the robot changes its heading.
• While the simulation is running, open the Proportional Controller subsystem and double-click

the Linear Velocity (slider) block. Move the slider to 2. Observe the increase in robot velocity.
• Click Stop to end the simulation.

Observe Rate of Incoming Messages

Use the MATLAB-based simulator to observe the timing and rate of incoming messages.

• Close any existing Robot Simulator figure windows.
• Click Play to start simulation.
• Open the Scope block. Observe that the IsNew output of the Subscribe block is always 0,

indicating that no messages are being received for the /odom topic. The horizontal axis of the plot
indicates simulation time in seconds.

• At the MATLAB command line, type ExampleHelperSimulinkRobotROS to start the MATLAB-
based robot simulator. This simulator publishes /odom messages at approximately 20 Hz in wall-
clock elapsed time.

• In the Scope display, observe that the IsNew output has the value 1 at an approximate rate of 20
times per second, in elapsed wall-clock time.

 Feedback Control of a ROS-Enabled Robot

1-103

The synchronization with wall-clock time is due to the Simulation Rate Control block. Typically, a
Simulink simulation executes in a free-running loop whose speed depends on complexity of the model
and computer speed (see “Simulation Loop Phase” (Simulink)). The Simulation Rate Control block
attempts to regulate Simulink execution so that each update takes 0.02 seconds in wall-clock time
when possible. (This is equal to the fundamental sample time of the model.) See the comments inside
the block for more information.

In addition, the Enabled subsystems for the Proportional Controller and the Command Velocity
Publisher ensure that the model only reacts to genuinely new messages. If enabled subsystems were
not used, the model would repeatedly process the same (most-recently received) message repeatedly,
leading to wasteful processing and redundant publishing of command messages.

1 ROS Featured Examples

1-104

Fusion of Radar and Lidar Data Using ROS
Perform track-level sensor fusion on recorded lidar sensor data for a driving scenario recorded on a
rosbag. This example uses the same driving scenario and sensor fusion as the “Track-Level Fusion of
Radar and Lidar Data” (Sensor Fusion and Tracking Toolbox) example, but uses a prerecorded rosbag
instead of the driving scenario simulation.

Extract Sensor Data from Rosbag

This provides an example rosbag containing lidar, radar, and vehicle data, and is approximately 33MB
in size. Download the rosbag from the MathWorks website.

bagFile = matlab.internal.examples.downloadSupportFile("ros","rosbags/simulated_lidar_radar_driving_798.bag");

Access the rosbag and view the available topics.

bag = rosbag(bagFile);
disp(bag.AvailableTopics(:,["NumMessages", "MessageType"]))

 NumMessages MessageType
 ___________ __

 /clock 114 rosgraph_msgs/Clock
 /ego/lidar_scan 114 sensor_msgs/PointCloud2
 /ego/radar_1/detections 114 cob_object_detection_msgs/DetectionArray
 /ego/radar_2/detections 114 cob_object_detection_msgs/DetectionArray
 /ego/radar_3/detections 114 cob_object_detection_msgs/DetectionArray
 /ego/radar_4/detections 114 cob_object_detection_msgs/DetectionArray
 /ego/state 114 nav_msgs/Odometry

The ego vehicle has one lidar and four radar sensors, as well as absolute positional information for
itself. These messages can be extracted into separate arrays for later fusion. Because this rosbag is
compressed to reduce file size, reading the messages may take a few seconds. Extract the messages
as structures using the DataFormat name-value argument, which improves overall performance for
ROS messages.

lidarBagSel = select(bag,"Topic","/ego/lidar_scan");
lidarMsgs = readMessages(lidarBagSel,"DataFormat","struct");
stateBagSel = select(bag,"Topic","/ego/state");
stateMsgs = readMessages(stateBagSel,"DataFormat","struct");
radarMsgs = cell(bag.AvailableTopics{"/ego/radar_1/detections","NumMessages"},4);
for idxRadar = 1:4
 radarBagSel = select(bag,"Topic",sprintf("/ego/radar_%d/detections",idxRadar));
 radarMsgs(:,idxRadar) = readMessages(radarBagSel,"DataFormat","struct");
end

Make timestamps to be used with fusion relative to the first message timestamp. Note that the bag
StartTime cannot be used since that is the timestamp the first message was recorded at, which is
later than the message timestamp.

clockBagSel = select(bag,"Topic","/clock");
clockMsg = readMessages(bag,1,"DataFormat","struct");
startTime = double(clockMsg{1}.Clock_.Sec) + double(clockMsg{1}.Clock_.Nsec)*1e-9;

 Fusion of Radar and Lidar Data Using ROS

1-105

Set Up Sensor Tracking and Fusion

Information about the sensors is known based on the vehicle set up, and needs to be put in a format
usable by the tracking algorithm.

[lidarInfo, radarInfo, radarParameters] = helperRadarLidarInfo;

Radar and lidar tracking algorithms are necessary to process the high-resolution scans and
determine the objects viewed in the scans without repeats. These algorithms are defined as helper
functions. More details on the algorithms can be seen in the “Track-Level Fusion of Radar and Lidar
Data” (Sensor Fusion and Tracking Toolbox) example.

radarTrackingAlgorithm = helperROSRadarTracker(radarInfo);
radarConfig = fuserSourceConfiguration("SourceIndex",1,...
 "IsInitializingCentralTracks",true,...
 "CentralToLocalTransformFcn",@central2radar,...
 "LocalToCentralTransformFcn",@radar2central);

lidarTrackingAlgorithm = helperLidarTrackingAlgorithm(lidarInfo);
lidarConfig = fuserSourceConfiguration("SourceIndex",2,...
 "IsInitializingCentralTracks",true);

fuser = trackFuser("SourceConfigurations",{radarConfig;lidarConfig},...
 "StateTransitionFcn",lidarTrackingAlgorithm.StateTransitionFcn,...
 "ProcessNoise",diag([1 3 1]),...
 "HasAdditiveProcessNoise",false,...
 "AssignmentThreshold",[250 inf],...
 "ConfirmationThreshold",[3 5],...
 "DeletionThreshold",[5 5],...
 "StateFusion","Custom",...
 "CustomStateFusionFcn",@helperRadarLidarFusionFcn);

Visualization

Set up figure and properties for visualization of sensor data using a helper function.

displayHelper = helperROSSensorFusionDisplay;

Perform Fusion on Sensor Messages

Iterate through the messages and run the sensor fusion algorithm. Watch the visualization to see the
rosbag played back and the tracking of vehicles using the sensor fusion.

The sensors were triggered to all measure simulataneously, and all radar sensors published a
message at each triggering, even if no detections were present. Because all the message arrays are
all the same length, the processing of the sensor data is far simpler. If sensors triggered at distinct
rates, connection issue occurred, or messages were received out of order, an intermediate step of
synchronizing the sensor data may be necessary.

for idx = 1:numel(lidarMsgs)
 % Extract time on first sensor reading.
 % Make time relative to rosbag start time for easier tracking.
 lidarTimeStamp = lidarMsgs{idx}.Header.Stamp;
 lidarTime = double(lidarTimeStamp.Sec) + ...
 double(lidarTimeStamp.Nsec)*1e-9 - startTime;
 radarTimeStamp = radarMsgs{idx,1}.Header.Stamp;
 radarTime = double(radarTimeStamp.Sec) + ...

1 ROS Featured Examples

1-106

 double(radarTimeStamp.Nsec)*1e-9 - startTime;

 % Extract vehicle state and modify structures for processing.
 egoPose = struct;
 stateMsg = stateMsgs{idx};
 positionMsg = stateMsg.Pose.Pose.Position;
 egoPose.Position = [positionMsg.X ; positionMsg.Y ; positionMsg.Z];
 % Orientation in degrees.
 orientQuat = rosReadQuaternion(stateMsg.Pose.Pose.Orientation);
 orientEul = eulerd(orientQuat,"XYZ","point");
 egoPose.Roll = orientEul(1);
 egoPose.Pitch = orientEul(2);
 egoPose.Yaw = orientEul(3);
 % By convension, nav_msgs/Odometry velocity is provided in the child
 % reference frame (the vehicle). The fusion requires velocity in the world
 % reference frame.
 velMsg = stateMsg.Twist.Twist.Linear;
 egoPose.Velocity = rotatepoint(orientQuat,...
 [velMsg.X velMsg.Y velMsg.Z]);

 % Extract point cloud from lidar for processing
 % This lidar provided no RGB or intensity information
 lidarXYZPoints = rosReadXYZ(lidarMsgs{idx});
 ptCloud = pointCloud(lidarXYZPoints);

 % Extract radar detections into a single array using metadata to
 % specify the source sensor.
 nDetections = sum(cellfun(@(msg) numel(msg.Detections),radarMsgs(idx,:)));
 radarDetections = cell(nDetections,1); % Preallocate
 idxDetection = 1;
 for idxRadar = 1:size(radarMsgs,2)
 for idxRadarDetection = 1:numel(radarMsgs{idx,idxRadar}.Detections)
 detMsg = radarMsgs{idx,idxRadar}.Detections(idxRadarDetection);
 detTime = double(detMsg.Header.Stamp.Sec) + ...
 double(detMsg.Header.Stamp.Nsec)*1e-9 - startTime;
 measureMsg = detMsg.Pose.Pose.Position;
 measurement = [measureMsg.X ; measureMsg.Y ; measureMsg.Z];
 % Measurement noise is stored in the bounding box field due to
 % this message type containing Pose instead of PoseCovariance.
 measureNoise = diag([detMsg.BoundingBoxLwh.X detMsg.BoundingBoxLwh.Y detMsg.BoundingBoxLwh.Z]);
 % Store signal-to-noise ratio in Score field.
 objectAttributes = struct("TargetIndex",detMsg.Id,"SNR",detMsg.Score);
 radarDetections{idxDetection} = objectDetection(detTime,measurement,...
 "MeasurementNoise",measureNoise,...
 "SensorIndex",idxRadar,...
 "ObjectClassID",0,...
 "ObjectAttributes",{objectAttributes},...
 "MeasurementParameters",{radarParameters(idxRadar)});
 idxDetection = idxDetection + 1;
 end
 end

 % Generate sensor tracks and analysis information like the bounding box
 % detections and point cloud segmentation information.
 radarTracks = radarTrackingAlgorithm(egoPose, radarDetections, radarTime);
 [lidarTracks, lidarDetections, segmentationInfo] = ...
 lidarTrackingAlgorithm(egoPose, ptCloud, lidarTime);
 localTracks = [radarTracks ; lidarTracks];

 Fusion of Radar and Lidar Data Using ROS

1-107

 % Update the fuser. The first call must contain one local track.
 if ~(isempty(localTracks) && ~isLocked(fuser))
 fusedTracks = fuser(localTracks,lidarTime);
 else
 fusedTracks = objectTrack.empty(0,1);
 end

 % Update the display
 updateSensorData(displayHelper,ptCloud,radarDetections)
 plotTracks(displayHelper,radarTracks,lidarTracks,fusedTracks,egoPose)
end

Utility Functions

The following function definitions are used in the above script.

radar2central

function centralTrack = radar2central(radarTrack)
% Initialize a track of the correct state size
centralTrack = objectTrack('State',zeros(10,1),...
 'StateCovariance',eye(10));

% Sync properties of radarTrack except State and StateCovariance with
% radarTrack See syncTrack defined below.
centralTrack = syncTrack(centralTrack,radarTrack);

xRadar = radarTrack.State;
PRadar = radarTrack.StateCovariance;

1 ROS Featured Examples

1-108

H = zeros(10,7); % Radar to central linear transformation matrix
H(1,1) = 1;
H(2,2) = 1;
H(3,3) = 1;
H(4,4) = 1;
H(5,5) = 1;
H(8,6) = 1;
H(9,7) = 1;

xCentral = H*xRadar; % Linear state transformation
PCentral = H*PRadar*H'; % Linear covariance transformation

PCentral([6 7 10],[6 7 10]) = eye(3); % Unobserved states

% Set state and covariance of central track
centralTrack.State = xCentral;
centralTrack.StateCovariance = PCentral;
end

central2radar

function radarTrack = central2radar(centralTrack)
% Initialize a track of the correct state size
radarTrack = objectTrack('State',zeros(7,1),...
 'StateCovariance',eye(7));

% Sync properties of centralTrack except State and StateCovariance with
% radarTrack See syncTrack defined below.
radarTrack = syncTrack(radarTrack,centralTrack);

xCentral = centralTrack.State;
PCentral = centralTrack.StateCovariance;

H = zeros(7,10); % Central to radar linear transformation matrix
H(1,1) = 1;
H(2,2) = 1;
H(3,3) = 1;
H(4,4) = 1;
H(5,5) = 1;
H(6,8) = 1;
H(7,9) = 1;

xRadar = H*xCentral; % Linear state transformation
PRadar = H*PCentral*H'; % Linear covariance transformation

% Set state and covariance of radar track
radarTrack.State = xRadar;
radarTrack.StateCovariance = PRadar;
end

syncTrack

function tr1 = syncTrack(tr1,tr2)
props = properties(tr1);
notState = ~strcmpi(props,'State');
notCov = ~strcmpi(props,'StateCovariance');

 Fusion of Radar and Lidar Data Using ROS

1-109

props = props(notState & notCov);
for i = 1:numel(props)
 tr1.(props{i}) = tr2.(props{i});
end
end

1 ROS Featured Examples

1-110

MATLAB Programming for Code Generation
This example shows the recommended workflow for generating a standalone executable from
MATLAB® code that contains ROS interfaces.

Prerequisites

• This example requires MATLAB Coder™.
• You must have access to a C/C++ compiler that is configured properly. You can use mex -setup

cpp to view and change the default compiler. For more details, see Change Default Compiler.

Overview

A subset of ROS MATLAB functions such as rossubscriber, rospublisher, and rosrate support
C++ code generation. To create a standalone ROS node from MATLAB code, follow these steps:

• Create the entry-point function for creating a standalone application. The entry-point function
must not have any inputs and must not return any outputs.

• Add the %#codegen directive to the MATLAB function to indicate that it is intended for code
generation. This directive also enables the MATLAB code analyzer to identify warnings and errors
specific to MATLAB for code generation.

• Modify the ROS functions to use message structures.
• Identify MATLAB code that does not support C++ code generation and modify the MATLAB code

to use functions or constructs that support code generation.
• Create a MATLAB Coder configuration object and specify the hardware as 'Robot Operating

System (ROS)'.
• Use codegen command to generate a stand-alone executable.

Generate Code for Subscriber

Consider the following MATLAB code.

function mynode(numIterations)
%mynode Receive and display sensor_msgs/JointState messages
rosinit;

% Trajectory points to be published
sub = rossubscriber("/servo");

% Display position
for k = 1:numIterations
 msg = receive(sub);
 if ~isempty(msg.Position > 0)
 disp(msg.Position(1))
 else
 disp("Received empty message..");
 end
end
rosshutdown;
end

This MATLAB code receives sensor_msgs/JointState messages published to the /servo topic
and displays the first element of the position in a loop. The function has an input argument that sets
the number of iterations. To create a stand-alone ROS node, modify the code as follows:

 MATLAB Programming for Code Generation

1-111

https://www.mathworks.com/help/matlab/matlab_external/changing-default-compiler.html

• Eliminate the input argument numIterations using a while loop.
• Add the %#codegen directive.
• Specify the message type for the rossubscriber call.
• Use message structures instead of message classes.
• Eliminate rosinit and rosshutdown calls that do not generate code.
• Replace the disp function which does not support code generation, with fprintf.

Note that you execute the rosinit and rosshutdown functions only once in a MATLAB session. Avoid
rosinit and rosshutdown functions for code intended for standalone deployment. In stand-alone
deployment, individual ROS nodes are not expected to start or stop the ROS master. If you need to
include rosinit and roshutdown calls in your MATLAB code for interpreted execution, declare
them as extrinsic functions at the top of your entry-point function.

The entry-point function cannot take any inputs or return outputs. A standalone ROS node executable
is intended to be launched outside MATLAB, such as from a system command terminal, and therefore
cannot take any MATLAB inputs or return MATLAB outputs.

To eliminate the input argument numIterations, replace the for loop with an infinite while loop.
For stand-alone deployment, the generated node is expected to run until you terminate it externally. A
good programming practice is to replace the for loops with a while loop for standalone deployment.

The rossubscriber function needs the message type to be specified as a compile time constant for
code generation. The function uses this information to create the return message type for receive
calls. The rossubscriber function supports code generation for message structures only. To return
a message structure, specify the name-value pair argument, "DataFormat","struct", when
creating a subscriber.

After you modify the code, the MATLAB code for the entry-point function is as follows:

function mynode
%mynode Receive and display sensor_msgs/JointState messages
%#codegen

% Trajectory points to publish
sub = rossubscriber("/servo","sensor_msgs/JointState","DataFormat","struct");

% Display position
while (1)
 msg = receive(sub);
 if ~isempty(msg.Position > 0)
 fprintf("Position = %f\n",msg.Position(1))
 else
 fprintf("Received empty message..\n");
 end
end
end

Create a MATLAB Coder configuration that uses "Robot Operating System (ROS)" hardware.
Set the HardwareImplementation.ProdHWDeviceType parameter of the MATLAB Coder
configuration object for the intended deployment hardware. For example, if you are deploying
generated code to a Windows computer set HardwareImplementation.ProdHWDeviceType to
"Intel->x86-64 (Windows64)". To generate code, execute the following commands:

cfg = coder.config("exe");
cfg.Hardware = coder.hardware("Robot Operating System (ROS)");

1 ROS Featured Examples

1-112

matlab:doc('coder.extrinsic'

cfg.Hardware.DeployTo = "Localhost";
cfg.Hardware.BuildAction = "Build and run";
cfg.HardwareImplementation.ProdHWDeviceType = "Intel->x86-64 (Windows64)";
cfg.HardwareImplementation.ProdLongLongMode = true; % Use 'long long' for Int64 or Uint64 data types
codegen mynode -config cfg

You can send messages to mynode using the following command on a ROS terminal:

rostopic pub /servo sensor_msgs/JointState -r 1 "{header:{seq: 0, stamp:{secs: 0,nsecs: 0},frame_id:""},name:["joint"],position:[150.0,100.0],velocity:[0.0,0.0],effort:[0,0]}"

Generate Code for Publisher

Consider the following MATLAB code.

function mypubnode(updateRate)
%mypubnode Publish joint trajectory messages

% Create publisher
pub = rospublisher("/traj","trajectory_msgs/JointTrajectory");

% Create a message
msg = rosmessage("trajectory_msgs/JointTrajectory");
msg.JointNames{1} = 'Left';
msg.JointNames{2} = 'Right';
trajMsg = rosmessage("trajectory_msgs/JointTrajectoryPoint");
r = rosrate(updateRate);
while (1)
 msg.Header.Stamp = rostime("now");
 x = rand;
 y = rand;
 trajMsg.Positions = [x y -x -y];
 msg.Points = [trajMsg trajMsg];
 send(pub,msg);
 waitfor(r);
end
end

This MATLAB code publishes trajectory_msgs/JointTrajectory messages to the /traj topic.
You can set the message publishing rate externally. The trajectory_msgs/JointTrajectory
message is a nested message that has the following subfields:

>> rosmsg show trajectory_msgs/JointTrajectory
std_msgs/Header Header
char[] JointNames
JointTrajectoryPoint[] Points

The message can accommodate multiple joints and multiple trajectory points. If the number of joints
is M and the number of trajectory points for each joint is N, trajMsg has the dimensions M-by-1 and
trajMsg.Positions has the dimensions N-by-1. For this example, publish two trajectory points per
joint.

The function has an input argument that sets the number of iterations. To create a stand-alone ROS
node, modify the code as follows:

• Eliminate the input argument updateRate by directly specifying it within function body.
• Add the %#codegen directive.

 MATLAB Programming for Code Generation

1-113

• Use message structures instead of message classes.
• Eliminate any message fields that use cell strings to prepare for code generation.
• Grow variable-size fields of message structures in the correct dimension.

To eliminate the input argument updateRate, specify the update rate using a constant literal in the
entry-point function body. To modify the updateRate, you must re-generate code from the entry-
point function.

Modify the rospublisher, rosmessage and rosrate functions to use message structures. The
trajectory_msgs/JointTrajectory message structure has a field, JointNames, which is of type
cell string. Message fields of this type are not supported for code generation due to MATLAB Coder
limitations. In order to generate code for mypubnode function, avoid the use of JointNames fields in
code generation using coder.target function.

The original mypubnode function grows variable-size fields of the message structs in the wrong
dimension. As an illustration, create a message of type trajectory_msgs/JointTrajectory at
the MATLAB command line. Note that the first dimension of the variable-size fields is of size 0 while
the second dimension is of size 1:

msg = rosmessage('trajectory_msgs/JointTrajectory')

msg =

 ROS JointTrajectory message with properties:

 MessageType: 'trajectory_msgs/JointTrajectory'
 Header: [1×1 Header]
 Points: [0×1 JointTrajectoryPoint]
 JointNames: {0×1 cell}

 Use showdetails to show the contents of the message

The fields with dimensions 0-by-1 grow in the first dimension. The original code grows the Points
and Positions fields in the second dimension, which works in interpreted mode, but is not
supported for code generation. You get the following error message if you attempt to grow variable-
size fields of a message structure in the wrong dimension:

??? This assignment writes a 'trajectory_msgs_JointTrajectoryPointStruct_T' value into a 'struct_T' type. Code generation
does not support changing types through assignment. Check preceding assignments or input type specifications for type
mismatches.

After you modify the code, the MATLAB code for the entry-point function is as follows:

function mypubnode
%mypubnode Publish joint trajectory messages
%#codegen

% Create publisher
pub = rospublisher("/traj","trajectory_msgs/JointTrajectory","DataFormat","struct");

% Create a msg
msg = rosmessage("trajectory_msgs/JointTrajectory","DataFormat","struct");
if isempty(coder.target)
 msg.JointNames{1} = 'Left';
 msg.JointNames{2} = 'Right';
end

1 ROS Featured Examples

1-114

matlab:doc('coder.target'

trajMsg = rosmessage("trajectory_msgs/JointTrajectoryPoint","DataFormat","struct");
r = rosrate(1);
while (1)
 msg.Header.Stamp = rostime("now","DataFormat","struct");
 x = rand;
 y = rand;
 trajMsg.Positions = [x; y; -x; -y]; % Grow variable-size fields in the correct dimension
 msg.Points = [trajMsg; trajMsg]; % Grow variable-size fields in the correct dimension
 send(pub,msg);
 waitfor(r);
end
end

Create a MATLAB Coder configuration that uses "Robot Operating System (ROS)" hardware.
Set the HardwareImplementation.ProdHWDeviceType parameter of the MATLAB Coder
configuration object for the intended deployment hardware. For example, if you are deploying
generated code to a Windows computer set HardwareImplementation.ProdHWDeviceType to
"Intel->x86-64 (Windows64)". To generate code execute the following commands:

cfg = coder.config("exe");
cfg.Hardware = coder.hardware("Robot Operating System (ROS)");
cfg.Hardware.DeployTo = "Localhost";
cfg.Hardware.BuildAction = "Build and run";
cfg.HardwareImplementation.ProdHWDeviceType = "Intel->x86-64 (Windows64)";
cfg.HardwareImplementation.ProdLongLongMode = true; % Use 'long long' for Int64 or Uint64 data types
codegen mypubnode -config cfg

You can examine the contents of the messages published by mypubnode using rostopic echo /
traj command on a ROS terminal.

 MATLAB Programming for Code Generation

1-115

Generate a Standalone ROS Node from MATLAB®
This example shows how to generate C++ code for a standalone ROS node from a MATLAB function.
It then shows how to build and run the ROS node on a Windows® machine.

Prerequisites

• This example requires MATLAB Coder™.
• A Ubuntu Linux system with ROS and an SSH server installed is necessary for building and

running the generated C++ code. You can use your own Ubuntu ROS system, or you can use the
Linux virtual machine for Robotics System Toolbox™ examples (see Get Started with Gazebo and a
Simulated TurtleBot for instructions).

• You must have access to a C/C++ compiler that is configured properly. You can use mex -setup
cpp to view and change the default compiler. For more details, see Change Default Compiler.

Control a ROS-Enabled Robot with a Function

Open the function robotROSFeedbackControl, which contains a proportional controller introduced
in the “Feedback Control of a ROS-Enabled Robot” on page 1-102 example. This function subscribes
to the /odom topic to get the current odometry status of the robot, and then publishes the output of a
proportional controller as a geometry_msgs/Twist message to the /cmd_vel topic. Doing so
provides the control commands for the robot to move towards the desired position.

Copy the robotROSFeedbackControl function to your local directory and change the
defaultDesiredPos variable to the desired coordinates.

Start an a Gazebo Empty World from the Linux virtual machine by opening the Gazebo Empty
application on the desktop. In the Linux virtual machine for Robotics System Toolbox™, the robot is
located at the [0,0] location by default.

Run the following commands to create a MATLAB ROS node in the same ROS network as the virtual
machine. Verify if you observe the same ROS nodes as shown below.

d = rosdevice;
rosinit(d.DeviceAddress)
rosnode list

Run the controller and observe that the robot is moving towards the published destination. At the
same time, observe the trajectory of the robot that shows up in a MATLAB figure. Keep this figure
open to compare the behavior of MATLAB execution and the generated executable node.

robotROSFeedbackControl

1 ROS Featured Examples

1-116

https://www.mathworks.com/help/ros/ug/get-started-with-gazebo-and-a-simulated-turtlebot.html
https://www.mathworks.com/help/ros/ug/get-started-with-gazebo-and-a-simulated-turtlebot.html
https://www.mathworks.com/help/matlab/matlab_external/changing-default-compiler.html

You can change the desired destination while the robot is moving. To do so, open a new terminal from
the virtual machine, source the ROS repository, and publish the new destination coordinates in the
form of a std_msgs/Float64MultiArray message to the /dest topic.

~$ source /opt/ros/melodic/local_setup.bash
~$ rostopic pub -1 /dest std_msgs/Float64MultiArray "{data:[0,0]}"

You can terminate the controller any time using Ctrl-C or typing in the following command in the
terminal from the virtual machine. Note that if you open a new terminal in the virtual machine, you
must source the ROS repository.

~$ rostopic pub -1 /stop std_msgs/Bool "1"

You can also tweak the distanceThre, linearVelocity, and rotationGain values in
robotROSFeedbackControl.m to obtain the desired robot behavior. For the proportional controller
in this example, the following parameter ranges provide robust performance. Alternatively, you can
replace the proportional controller with a custom controller for performance comparison.

distanceThre: 0<x<1
linearVelocity: 0<x<3
rotationGain: 0<x<6

To observe the behavior, reset the robot on the virtual machine by pressing Ctrl-R in Gazebo.

Create a Function for Code Generation

To generate a standalone C++ node, modify the function to make it compatible for code generation.

 Generate a Standalone ROS Node from MATLAB®

1-117

• Because objects do not support code generation, replace them with structs for rospublisher,
rossubscriber, and rosmessage. Specify the name-value pair "DataFormat","struct" in
the respective function calls to create them as structures.

• Save the modified MATLAB function to robotROSFeedbackControlCodegen.m. Ensure any
other modifications that you made in robotROSFeedbackControl function are reflected in
robotROSFeedbackControlCodegen.

Generate Executable for robotROSFeedbackControlCodegen

Generate an executable node for the robotROSFeedbackControlCodegen function. Specify the
hardware as 'Robot Operating System (ROS)'. Set the build action to Build and run so that
the ROS node starts running after you generate it. Call plotPath to plot the robot trajectory.

cfg = coder.config('exe');
cfg.Hardware = coder.hardware('Robot Operating System (ROS)');
cfg.Hardware.BuildAction = 'Build and run';
codegen robotROSFeedbackControlCodegen -args {} -config cfg
plotPath

The configuration generates and runs the ROS node on your local host computer by default. You can
opt to deploy and run the ROS node on a remote device (such as on a virtual machine) instead by
modifying cfg.Hardware. For example, if you are using the Linux virtual machine for Robotics
System Toolbox™, set the following configuration parameters before remote deployment. Note that
the actual values might be different for your remote device. Verify them before deployment.

cfg.Hardware.RemoteDeviceAddress = '192.168.243.144';
cfg.Hardware.RemoteDeviceUsername = 'user';
cfg.Hardware.RemoteDevicePassword = 'password';
cfg.Hardware.DeployTo = 'RemoteDevice';

1 ROS Featured Examples

1-118

Verify Generated ROS Node

After the generated executable starts running, for the same destination coordinates, verify that the
trajectory of the robot is similar to what you observe during MATLAB execution. You can also observe
the robot moving in Gazebo on the virtual machine. You can publish a different destination coordinate
while the robot is in motion. Refer to the Control a ROS-Enabled Robot with a Function section,
which shows how to publish a new set of destination coordinates through a virtual machine terminal.

Terminate the generated ROS node by pressing Ctrl-C or sending a message to the /stop topic.

Shut down the ROS system.

rosshutdown

 Generate a Standalone ROS Node from MATLAB®

1-119

Generate a Standalone ROS Node from Simulink®
This example shows you how to generate and build a standalone ROS node from a Simulink model.

Introduction

In this example, you configure a model to generate C++ code for a standalone ROS node. You then
build and run the ROS node on an Ubuntu® Linux® system.

Prerequisites

• This example requires Simulink Coder™ and Embedded Coder™.
• A Ubuntu Linux system with ROS and an SSH server installed is necessary for building and

running the generated C++ code. You can use your own Ubuntu ROS system, or you can use the
Linux virtual machine used for Robotics System Toolbox™ examples (see “Get Started with
Gazebo and a Simulated TurtleBot” on page 1-129 for instructions).

• Review the “Feedback Control of a ROS-Enabled Robot” on page 1-102 example.

Configure a Model for Code Generation

Configure a model to generate C++ code for a standalone ROS node. The model is the proportional
controller introduced in the “Feedback Control of a ROS-Enabled Robot” on page 1-102 example.

• Open RobotController.slx. Click the link or run RobotController in the Command Window.
• In the Prepare section under ROS tab, click Hardware Settings to open the Hardware

Implementation pane of the Configuration Parameters dialog. The Hardware board settings
section contains settings specific to the generated ROS package, such as information to be
included in the package.xml file. Change Maintainer name to ROS Example User.

• The model uses variable-sized arrays. To enable code-generation of variable-sized signals, check
variable-size signals under Code Generation > Interface > Software environment. If the
variable-size signals option is not visible, check the option, Use Embedded Coder Features in
Hardware Implementation > Advanced parameters.

• In the Solver pane of the Configuration Parameters dialog, ensure that Solver Type is set to
Fixed-step, and set Fixed-step size to 0.05. In generated code, the Fixed-step size defines the
actual time step, in seconds, that is used for the model update loop (see “Execution of Code
Generated from a Model” (Simulink Coder)). It can be made smaller (e.g., 0.001 or 0.0001) but for
current purposes 0.05 is sufficient.

Configure the Connection to the ROS Device

A ROS device is any Linux system that has ROS installed and is capable of building and running a
ROS node. If you have Simulink Coder, you can generate code for a standalone ROS node. If your
system is connected to a ROS device, Simulink can also transfer the generated code to the ROS
device, build an executable, and run the resulting ROS node (this is referred to as "deploying" the
ROS node).

In this task, you decide if you want to generate code for the ROS node or if you want to build and run
it on a ROS device. If you are connected to a ROS device, you can configure Simulink to use it as a
deployment target for your ROS node.

• Under the Modeling tab, click Model Settings.
• In the Hardware Implementation pane of Configuration Parameters dialog, select an Build

action under Hardware board settings > Target hardware resources > Groups > Build

1 ROS Featured Examples

1-120

Options. The selected build action affects the behavior of Simulink when building the model.
None (the default setting) only generates the code for the ROS node, without building it on an
external ROS device. Build and load generates the code, transfers it to an external device and
builds a ROS node executable. If you select Build and run, the resulting node executable is started
automatically at the end of the build.

• Set the Build action to Build and run.
• Configure the connection to your external ROS device. Under the ROS tab, from the Deploy to

drop-down, click Manage Remote Device. This opens the Connect to a ROS device dialog. In
this dialog, you can enter all the information that Simulink needs to deploy the ROS node. This
includes the IP address or host name of your ROS device, your login credentials, and the Catkin
workspace. Change Catkin workspace to ~/catkin_ws_test.

ROS Folder is the location of the ROS installation on the ROS device. If you do not specify this folder,
the settings test (see next step) tries to determine the correct folder for you.

• If the ROS device is turned on and accessible from your computer, you can verify the connection
settings by clicking Test. The test verifies every device setting and display warnings and errors in
the Simulink Diagnostic Viewer if problems are found. If possible, the test also suggests how the
problems can be fixed. Click Test now.

• Most likely, the Catkin workspace ~/catkin_ws_test does not exist on the target device. The
test detects this problem and suggests to create the folder and initialize the workspace. Click Fix
to apply this action automatically. After a few seconds, you should see a green notice that the
folder has been created successfully. In the following figure you can see an example of creating
the folder successfully. To verify that the Catkin workspace is now available, click Test in the
connection settings dialog again. The warning has disappeared and the Catkin workspace is ready
to build your ROS node.

 Generate a Standalone ROS Node from Simulink®

1-121

• Change the device connection settings and test them until no other warnings or errors are shown.
If an automatic fix to your settings is possible, Simulink suggests it by displaying the Fix button.
Once you have a good set of settings, click OK in the connection settings dialog to save the
settings.

The connection settings are not specific to a single model, but apply to all ROS models in
Simulink.

Generate the C++ ROS Node

Generate code for a standalone ROS node, and automatically transfer, build, and run it on the ROS
device. Exercise the generated ROS node using a ROS master running on the ROS device.

1. In MATLAB®, change the current folder to a temporary location where you have write permission.

2. The code generation process first prepares the model for simulation to ensure that all blocks are
properly initialized. This preparation requires a valid connection to a ROS master.

1 ROS Featured Examples

1-122

In MATLAB, you can use the rosdevice object to start a ROS master on the ROS device. If you
provide no arguments, rosdevice uses the device connection settings you entered in the Simulink
dialog to connect to the ROS device.

d = rosdevice
runCore(d);

3. Use rosinit to connect MATLAB to the ROS master running on the ROS device:

rosinit(d.DeviceAddress)

4. Tell Simulink to use the same ROS connection settings as MATLAB. Under the Simulation tab, in
Prepare section, select ROS Network. Set the ROS Master (ROS 1) and Node Host network
addresses to Default.

 Generate a Standalone ROS Node from Simulink®

1-123

You only have to execute steps 2 - 4 once per MATLAB session, not every time you generate
a ROS node.

5. Under the ROS tab, click Deploy > Build & Run. If you get any errors about bus type mismatch,
close the model, clear all variables from the base MATLAB workspace, and re-open the model.

Click on the View Diagnostics link at the bottom of the model toolbar to see the output of the build
process.

6. Once the code generation completes, the ROS node is transferred to the Catkin workspace on your
ROS device. The node builds there and starts to run automatically.

The generated node connects to the ROS master running on the ROS device.

7. Use rosnode to list all running nodes is the ROS network. "robotcontroller" should be in the
displayed list of nodes.

rosnode list

You can use rostopic to verify that the deployed node publishes data on the ROS topic to control
the robot motion:

rostopic info /mobile_base/commands/velocity

Run and Verify the ROS Node

Run the newly-built ROS node and verify its behavior using a MATLAB-based robot simulator.

1. In MATLAB, type ExampleHelperSimulinkRobotROS to start the Robot Simulator. The simulator
automatically connects to the ROS master running on the ROS device. If you want to connect to a
Gazebo-based robot simulation, see “Connect to a ROS-enabled Robot from Simulink®” on page 1-94.

sim = ExampleHelperSimulinkRobotROS

1 ROS Featured Examples

1-124

2. Verify that the simulated robot moves toward the goal (the Desired Position constant specified in
the model). The robot stops once it reaches the goal [-10, 10].

3. Click Reset Simulation to reset the robot's position to [0, 0]. The robot starts to move
immediately towards the goal position.

4. In MATLAB, you can manage ROS nodes generated by Simulink with the rosdevice object. Once
a Simulink model is deployed, you can use rosdevice to run and stop the node at any point, without
having to rebuild it in Simulink.

The AvailableNodes property shows the deployed robotcontroller node. You can verify that the
node is running by calling the isNodeRunning function.

d = rosdevice

 Generate a Standalone ROS Node from Simulink®

1-125

isNodeRunning(d, 'robotcontroller')

5. Stop the ROS node from running.

stopNode(d, 'robotcontroller')
isNodeRunning(d, 'robotcontroller')

6. Click the Reset Simulation button in the simulation window. The robot stays at location [0,0] and
does not move.

• Now restart the node.

runNode(d, 'robotcontroller')

• The robot should start moving towards the goal position again.

7. Once you are done verifying, you can clean up the system state as follows.

• Stop the node running on the target device

stopNode(d, 'robotcontroller')

• On the host computer, close the Robot Simulator figure window and type rosshutdown at the
MATLAB command line.

rosshutdown

Advanced Topics and Troubleshooting

Specify ROS network settings in Simulink: By default, Simulink uses the ROS connection settings
from rosinit in MATLAB. To override these settings, specify ROS connection settings in Simulink.
Under the Simulation tab, in Prepare section, select ROS Network and set the ROS Master and
Node Host network addresses:

1 ROS Featured Examples

1-126

Generated C++ code archive: No matter what Build action you select (None, Build and load,
Build and run), Simulink always generates two files in your current folder: an archive containing the
C++ source code (RobotController.tgz in our example) and a shell script for extracting and building
the C++ code manually (build_ros_model.sh). If your MATLAB computer is not connected to the ROS
device, you can transfer the files manually and build them there.

Processor-specific generated code: If you use blocks from other products (such as Computer
Vision System Toolbox™), the generated code may include processor-specific optimizations that lead

 Generate a Standalone ROS Node from Simulink®

1-127

to compilation problems when building the ROS node on Linux. In these cases, you need to let
Simulink know the platform on which the generated code is compiled. You can do this through the
Hardware Implementation pane of the Model Configuration Parameters dialog.

Running ROS Master in MATLAB: In the example above, you connected to a ROS master running
on the ROS device. Alternatively, you can create a ROS master in MATLAB. Use rosinit at the
MATLAB command line:

rosinit('NodeHost', <IP address of your computer>)

For example, if the IP address of your host computer is 172.28.194.92, use the following command:

rosinit('NodeHost', '172.28.194.92')

The NodeHost setting is important to ensure that the generated ROS node is able to communicate to
the master on MATLAB. Note: The generated ROS node will use the NodeHost IP address to
communicate to the global ROS node in MATLAB, so ensure that the specified IP address is accessible
from the ROS device (for example, using ping). See the “Connect to a ROS Network” on page 1-7
example for more details on the significance of the NodeHost setting.

Tasking mode: Simulink can generate code for either multi-tasking or single-tasking modes (see
“Time-Based Scheduling and Code Generation” (Simulink Coder)). By default, generated ROS code
uses single-tasking mode (a single thread for all the rates) without real-time scheduling. This allows
the generated ROS code to execute without sudo privileges, but can lead to less predictable
performance.

If you require more predictable performance, you can configure the model to use multi-tasking. In the
Solver pane of the Configuration Parameters dialog enable Treat each discrete rate as a separate
task to enable multi-tasking. In generated code, this creates a separate thread for each rate in the
model and uses prioritized scheduling for the threads.

To run the ROS node, you need to have administrative privileges on the ROS device. Simulink
automatically detects if your privileges are insufficient when the model is deployed to the target
device.

See Also

Related Examples
• “Generate Code to Manually Deploy a ROS Node from Simulink” on page 4-29

1 ROS Featured Examples

1-128

Get Started with Gazebo and a Simulated TurtleBot
This example shows how to set up the Gazebo® simulator engine. This example prepares you for
further exploration with Gazebo and also for exploration with a simulated TurtleBot®.

Gazebo is a simulator that allows you to test and experiment realistically with physical scenarios.
Gazebo is a useful tool in robotics because it allows you to create and run experiments rapidly with
solid physics and good graphics. MATLAB® connects to Gazebo through the ROS interface.

Download Virtual Machine

You can download a virtual machine image that already has ROS and Gazebo installed. This virtual
machine is based on Ubuntu® Linux® and is pre-configured to support the examples in ROS
Toolbox™.

• Download and install the ROS Virtual Machine.
• Launch the virtual machine.
• On the Ubuntu desktop you see multiple Gazebo world start-up scripts, as well as other utility

shortcuts. For the TurtleBot® examples, use the Gazebo Empty, Gazebo House, Gazebo Office,
or Gazebo Sign Follower ROS icons.

• Click Gazebo House. A world opens.

 Get Started with Gazebo and a Simulated TurtleBot

1-129

https://www.mathworks.com/ros_vm_install/v4

Note: If the Gazebo screen looks entirely black, refresh the image by minimizing it and then
maximizing it.

• Open a new terminal in the Ubuntu virtual machine.
• Type ifconfig and return to see the networking information for the virtual machine.
• Under eth0, the inet addr displays the IP address for the virtual machine.

1 ROS Featured Examples

1-130

• Two ROS environment variables must be set to set up the network: ROS_MASTER_URI and
ROS_IP. If you are using the demos from the desktop of the Linux® virtual machine, these
variables are usually automatically set at startup.

• (Optional) If you are using your own virtual machine set up the variables by executing the
following commands in the terminal. Replace IP_OF_VM with the IP address retrieved
through ifconfig):

echo export ROS_MASTER_URI=http://IP_OF_VM:11311 >> ~/.bashrc
echo export ROS_IP=IP_OF_VM >> ~/.bashrc

• Check the environment variables using echo $ENV_VAR (replacing ENV_VAR with the
appropriate environment variable). You can close and reopen your terminal for it to take effect.

• The following diagram illustrates correct environment variable assignments (with fake IP
addresses)

 Get Started with Gazebo and a Simulated TurtleBot

1-131

Connect to an Existing Gazebo Simulator

If you already have Gazebo running on a Linux distribution, set up the simulator as described here:

• On the ROS website, download the appropriate packages for TurtleBot.
• Follow the instructions on the ROS website to get the TurtleBot running in a simulated Gazebo

environment.
• Make sure the environment variables are appropriately set and that you can ping back and forth

between your host computer and the Gazebo computer. There are many ways to set up the
network. The “Connect to a ROS Network” on page 1-7 example contains tips on how to verify
connectivity between devices in the ROS network.

• To use any ROS commands in the Linux machine terminals, the terminal environment needs to be
set to use the proper ROS installation. Source the appropriate ROS environment setup script in
the terminal before running any ROS commands. In the VM, the command is: source /opt/ros/
melodic/setup.bash

• Make sure you have access to the following topics. In the terminal on the Linux machine, enter
rostopic list to see the at least these available topics.

/clock
/cmd_vel
/imu
/odom
/scan
/tf

1 ROS Featured Examples

1-132

Host Computer Setup

• Find the IP address of your host computer on the network. On a Windows® machine, at the
command prompt, type ipconfig. On a Mac or Linux machine, open a terminal and type
ifconfig. An example of ipconfig is shown.

Note: The connection type can vary depending on how you are connected to the laptop. In this case
you use the Ethernet, however, in many cases the wireless (wlan) is the appropriate connection.

• Ping the simulator machine ping IP_OF_VM. A successful ping is shown first, followed by an
unsuccessful ping.

 Get Started with Gazebo and a Simulated TurtleBot

1-133

Next Steps

• For more Gazebo examples, refer to: “Pick-and-Place Workflow in Gazebo Using ROS” (Robotics
System Toolbox)

• For TurtleBot examples, refer to: “Communicate with the TurtleBot” on page 1-157

1 ROS Featured Examples

1-134

Add, Build, and Remove Objects in Gazebo
This example explores more in-depth interaction with the Gazebo® Simulator from MATLAB®. Topics
include creating simple models, adding links and joints to models, connecting models together, and
applying forces to bodies.

Prerequisites: “Get Started with Gazebo and a Simulated TurtleBot” on page 1-129

Connect to Gazebo®

On your Linux® machine, start Gazebo. If you are using the virtual machine from “Get Started with
Gazebo and a Simulated TurtleBot” on page 1-129, start the Gazebo Empty world from the desktop.

Initialize ROS by replacing ipaddress with the IP address of the virtual machine. Create an instance
of the ExampleHelperGazeboCommunicator class.

ipAddress = "http://192.168.178.132:11311";
rosinit(ipAddress)

Initializing global node /matlab_global_node_77778 with NodeURI http://192.168.178.1:52158/

gazebo = ExampleHelperGazeboCommunicator;

Spawn a Simple Sphere

To create a model, use the ExampleHelperGazeboModel class. Define properties (using addLink)
and spawn a ball using the spawnModel function.

ball = ExampleHelperGazeboModel("Ball")

ball =
 ExampleHelperGazeboModel with properties:

 Name: 'Ball'
 ModelObj: [1×1 org.apache.xerces.dom.DocumentImpl]
 Links: []
 Joints: []

sphereLink = addLink(ball,"sphere",1,"color",[0 0 1 1])

sphereLink =
'link0'

spawnModel(gazebo,ball,[8.5 0 1])

All units for Gazebo commands are specified in SI units. Depending on your view, you might have to
zoom out to see the ball, because it is placed at [8.5, 0, 1]. Here is an image of the scene:

 Add, Build, and Remove Objects in Gazebo

1-135

Build and Spawn Bowling Pins

Create vectors x and y for the location of the bowling pins (in meters).

x = [1.5 1.5 1.5 1.5 2.5 2.5 2.5 3.5 3.5 4.5];
y = [-1.5 -0.5 0.5 1.5 -1 0 1 -0.5 0.5 0];

Define a basic model for the bowling pin using the ExampleHelperGazeboModel object. Use
addLink to create the cylinder and the ball.

pin = ExampleHelperGazeboModel("BowlPin");

link1 = addLink(pin,"cylinder",[1 0.2],"position",[0 0 0.5]);
link2 = addLink(pin,"sphere",0.2,"position",[0 0 1.2],"color",[0.7 0 0.2 1]);

The output of addLink produces a variable containing the assigned name of the link. These variables
create the joint.

Use addJoint to define the relationship between the two links. In this case they are attached
together by a revolute joint.

joint = addJoint(pin,link1,link2,"revolute",[0 0],[0 0 1]);

The arguments of the addJoint function are object, parent, child, type, limits, and axis.

After defining bowlPin once, You can create all ten bowling pins from the preceding
ExampleHelperGazeboModel. The following for loop spawns the models in Gazebo using the x and
y vectors.

1 ROS Featured Examples

1-136

for i = 1:10
 spawnModel(gazebo,pin,[x(i),y(i),0.7]);
 pause(1);
end

After adding the pins to the world, it looks like this:

Remove Models

If the TurtleBot® exists in the scene, remove it. Look in the list of models. Remove the one named
turtlebot3_burger, for this particular world.

if ismember("turtlebot3_burger",getSpawnedModels(gazebo))
 removeModel(gazebo,"turtlebot3_burger");
end

Spawn Built-In Models

Create an ExampleHelperGazeboModel for a Jersey barrier. The object finds this model on the
Gazebo website.

barrier = ExampleHelperGazeboModel("jersey_barrier","gazeboDB");

Spawn two Jersey barriers in the world using spawnModel.

spawnModel(gazebo,barrier,[1.5 -3 0]); % Right barrier
pause(1);
spawnModel(gazebo,barrier,[1.5 3 0]); % Left barrier

 Add, Build, and Remove Objects in Gazebo

1-137

Note: You need an Internet connection to spawn models that are not included in these examples.
However, if you have previously spawned a model in your Gazebo simulation, it is cached, so you can
spawn it later without an Internet connection.

The scene looks like this figure:

Apply Forces to the Ball

Retrieve the handle to the ball through the ExampleHelperGazeboSpawnedModel class.

spawnedBall = ExampleHelperGazeboSpawnedModel(ball.Name,gazebo)

spawnedBall =
 ExampleHelperGazeboSpawnedModel with properties:

 Name: 'Ball'
 Links: {'link0'}
 Joints: {0×1 cell}

Define parameters for the application of force. Here the duration is set to 1 second and the force
vector is set to -75 Newtons in the x direction.

duration = 1; % Seconds
forceVec = [-75 0 0]; % Newtons

Apply the force to the model using the applyForce function.

1 ROS Featured Examples

1-138

applyForce(spawnedBall,sphereLink,duration,forceVec);
pause(5);

Following are images of the collision and the aftermath

 Add, Build, and Remove Objects in Gazebo

1-139

Remove Models and Shut Down

Delete the models created for this example.

exampleHelperGazeboCleanupBowling;

Clear the workspace of publishers, subscribers, and other ROS-related objects when you are finished
with them.

clear

Use rosshutdown once you are done working with the ROS network. Shut down the global node and
disconnect from Gazebo.

rosshutdown

Shutting down global node /matlab_global_node_77778 with NodeURI http://192.168.178.1:52158/

When you are finished, close the Gazebo window on your virtual machine.

1 ROS Featured Examples

1-140

See Also

• “Apply Forces and Torques in Gazebo” on page 1-142

 Add, Build, and Remove Objects in Gazebo

1-141

Apply Forces and Torques in Gazebo
This example illustrates a collection of ways to apply forces and torques to models in the Gazebo®
simulator. First, application of torques is examined in three distinct ways using doors for illustration.
Second, two TurtleBot® Create models demonstrate the forcing of compound models. Finally, object
properties (bounce, in this case) are examined using basic balls.

Prerequisites: “Get Started with Gazebo and a Simulated TurtleBot” on page 1-129, “Add, Build, and
Remove Objects in Gazebo” on page 1-135

Connect to Gazebo

On your Linux® machine, start Gazebo. If you are using the virtual machine from “Get Started with
Gazebo and a Simulated TurtleBot” on page 1-129, click Gazebo Empty world on the desktop.

Initialize ROS by replacing ipaddress with the IP address of the virtual machine. Create an instance
of the ExampleHelperGazeboCommunicator class.

rosinit('http://192.168.233.133:11311')

Initializing global node /matlab_global_node_68978 with NodeURI http://192.168.233.1:53907/

gazebo = ExampleHelperGazeboCommunicator;

Add Moving Doors

This section demonstrates three distinct methods for applying joint torques. In this case, doors are
used.

Create a door model and spawn three instances in the simulator. Specify the spawn position and
orientation (units are meters and radians).

 doormodel = ExampleHelperGazeboModel('hinged_door','gazeboDB');
 door1 = spawnModel(gazebo,doormodel,[-1.5 2.0 0]);
 door2 = spawnModel(gazebo,doormodel,[-1.5 0.5 0],[0 0 pi]);
 door3 = spawnModel(gazebo,doormodel,[-1.5 -2.5 0]);

All units in Gazebo are specified using SI convention. With the doors added, the world looks like this
image:

1 ROS Featured Examples

1-142

Note: When the Gazebo simulation is left idle, movable items often drift. If you see the doors moving
slowly without a command, this behavior is normal. This happens because there is often more friction
in the real world than there is in the ideal setting of the Gazebo simulator.

Retrieve handles for the links and joints of the first door and display them.

 [links, joints] = getComponents(door1)

links = 3×1 cell
 {'hinged_door::frame' }
 {'hinged_door::door' }
 {'hinged_door::handles'}

joints = 3×1 cell
 {'hinged_door::handle' }
 {'hinged_door::hinge' }
 {'hinged_door::world_joint'}

For the first door, apply a torque directly to the hinge joint.

Apply the torque to the first door using jointTorque. Doing so makes it open and stay open during
the simulation. The first two lines define the stop time and effort parameters for the torque
application. The second entry in the joints cell array is hinged_door::hinge. Use this in the
jointTorque call.

 stopTime = 5; % Seconds
 effort = 3.0; % Newton-meters
 jointTorque(door1, joints{2}, stopTime, effort);

 Apply Forces and Torques in Gazebo

1-143

The second method is to apply a torque to the door link instead of the hinge joint. This method is not
as clean because the torque is applied to the center of mass of the link (which is the door in this case)
and is not applied around the axis of rotation. This method still produces a torque that moves the
door.

Use the applyForce function. The second entry in links is 'hinged_door::door'. Use it in the
applyForce call.

 forceVector = [0 0 0]; % Newtons
 torqueVector = [0 0 3]; % Newton-meters
 applyForce(door2, links{2}, stopTime, forceVector, torqueVector);

1 ROS Featured Examples

1-144

You can apply a force (instead of a torque) directly to the center of mass of the door for it to move.
The commands are:

 forceVector = [0 -2 0]; % Newtons
 applyForce(door2, links{2}, stopTime, forceVector);

Note: The forces are always applied from the world coordinate frame and not the object frame. When
you apply this force, it continually operates in the negative y direction. It does not result in a constant
torque on the door.

For the third door, manually define the hinge angle without applying a force or torque.

Use a while loop to create a swinging behavior for the door. Use the setConfig function of the
ExampleHelperGazeboSpawnedModel class.

angdelta = 0.1; % Radians
 dt = 0; % Seconds
 angle = 0; % Radians
 tic
 while (toc < stopTime)

 if angle > 1.5 || angle < 0 % In radians
 angdelta = -angdelta;
 end

 angle = angle+angdelta;
 setConfig(door3,joints{2},angle);
 pause(dt);
 end

 Apply Forces and Torques in Gazebo

1-145

Create TurtleBot Objects for Manipulation

This section demonstrates creation and external manipulation of a TurtleBot Create. It illustrates
simple control of a more complex object.

Create another TurtleBot in the world by adding the GazeboModel from the database (GazeboDB).
The robot spawned is a TurtleBot Create, not a Kobuki. Apply an external torque to its right wheel.

Note: Spawning the Create requires an internet connection.

 botmodel = ExampleHelperGazeboModel('turtlebot','gazeboDB');
 bot = spawnModel(gazebo,botmodel,[1,0,0]);

The TurtleBot originally spawns facing along the x-axis with an angle of 0 degrees. Change the
orientation to pi/2 radians (90 degrees) using this command:

 setState(bot,'orientation',[0 0 pi/2]);

1 ROS Featured Examples

1-146

Using applyForce, make the right wheel of the TurtleBot Create move by applying an external
torque to it from the ExampleHelperGazeboSpawnedModel object.

[botlinks, botjoints] = getComponents(bot)

botlinks = 5×1 cell
 {'turtlebot::rack' }
 {'turtlebot::create::base' }
 {'turtlebot::create::left_wheel' }
 {'turtlebot::create::right_wheel'}
 {'turtlebot::kinect::link' }

botjoints = 4×1 cell
 {'turtlebot::create::left_wheel' }
 {'turtlebot::create::right_wheel'}
 {'turtlebot::create_rack' }
 {'turtlebot::kinect_rack' }

The second entry of botjoints is 'turtlebot::create::right_wheel' Use botjoints{2} in the
jointTorque call.

turnStopTime = 1; % Seconds
turnEffort = 0.2; % Newton-meters
jointTorque(bot, botjoints{2}, turnStopTime, turnEffort)

 Apply Forces and Torques in Gazebo

1-147

You can experiment with application of forces to a TurtleBot base instead of to the wheels.

Make a second TurtleBot Create with spawnModel:

 bot2 = spawnModel(gazebo,botmodel,[2,0,0]);
 [botlinks2, botjoints2] = getComponents(bot2)

botlinks2 = 5×1 cell
 {'turtlebot::rack' }
 {'turtlebot::create::base' }
 {'turtlebot::create::left_wheel' }
 {'turtlebot::create::right_wheel'}
 {'turtlebot::kinect::link' }

botjoints2 = 4×1 cell
 {'turtlebot::create::left_wheel' }
 {'turtlebot::create::right_wheel'}
 {'turtlebot::create_rack' }
 {'turtlebot::kinect_rack' }

1 ROS Featured Examples

1-148

Apply a force to the base in the y direction. See that the base barely moves. The force is acting
perpendicular to the wheel orientation.

The first entry of botlinks2 is 'turtlebot::create::base'. Use botlinks2{1} in the applyForce call.

 applyForce(bot2,botlinks2{1},2,[0 1 0]);

Apply a force in the x direction. The robot moves more substantially.

 applyForce(bot2,botlinks2{1},2,[1 0 0]);

Apply a torque to the TurtleBot base to make it spin.

 applyForce(bot2,botlinks2{1},2,[0 0 0],[0 0 1]);

 Apply Forces and Torques in Gazebo

1-149

Add Bouncing Balls

This section demonstrates the creation of two balls and exposes the 'bounce' property.

Use the ExampleHelperGazeboModel class to create two balls in the simulation. Specify the
parameters of bouncing by using addLink.

 bounce = 1; % Unitless coefficient
 maxCorrectionVelocity = 10; % Meters per second
 ballmodel = ExampleHelperGazeboModel('ball');
 addLink(ballmodel,'sphere',0.2,'color',[0.3 0.7 0.7 0.5],'bounce',[bounce maxCorrectionVelocity]);

Spawn two balls, one on top of the other, to illustrate bouncing.

 spawnModel(gazebo,ballmodel,[0 1 2]);
 spawnModel(gazebo,ballmodel,[0 1 3]);

 pause(5);

After adding the balls, the world looks like this:

1 ROS Featured Examples

1-150

Remove Models and Shut Down

Clean up the models.

 exampleHelperGazeboCleanupApplyForces;

Clear the workspace of publishers, subscribers, and other ROS-related objects when you finish with
them.

clear

Use rosshutdown once you are done working with the ROS network. Shut down the global node and
disconnect from Gazebo.

rosshutdown

Shutting down global node /matlab_global_node_68978 with NodeURI http://192.168.233.1:53907/

When finished, close the Gazebo window on your virtual machine

Next Steps

• Refer to the next example: “Test Robot Autonomy in Simulation” on page 1-152

 Apply Forces and Torques in Gazebo

1-151

Test Robot Autonomy in Simulation
This example explores MATLAB® control of the Gazebo® Simulator.

When using robot simulators, it is important to test autonomous algorithms and dynamically alter the
surroundings in the world while the simulation is running. This example shows how to create basic
robot autonomy with Gazebo and how to interact with it. In this example the robot is the TurtleBot®
platform. For specific examples involving the TurtleBot, see the “Communicate with the TurtleBot” on
page 1-157 example.

In this example, you use a timer to control the autonomous aspects of TurtleBot movement. Timers
allow processes to run in the background in regular execution intervals without blocking the
MATLAB® command line. While you can use loops and other methods to examine basic autonomy, the
scheduled execution and non-blocking nature of timers make them the best choice for achieving
autonomous behavior.

Prerequisites: “Get Started with Gazebo and a Simulated TurtleBot” on page 1-129, “Add, Build, and
Remove Objects in Gazebo” on page 1-135, “Apply Forces and Torques in Gazebo” on page 1-142

Connect to Gazebo

On your Linux® machine, start Gazebo. If you are using the virtual machine from “Get Started with
Gazebo and a Simulated TurtleBot” on page 1-129, use the Gazebo Empty world.

Initialize ROS by replacing the sample IP address with the IP address of the virtual machine. Create
an instance of the ExampleHelperGazeboCommunicator class.

rosinit("http://192.168.178.132:11311")

Initializing global node /matlab_global_node_19208 with NodeURI http://192.168.178.1:53310/

gazebo = ExampleHelperGazeboCommunicator;

Build a wall in the world.

 wall = ExampleHelperGazeboModel("grey_wall","gazeboDB");
 spawnModel(gazebo,wall,[-2 4 0]);

All units in Gazebo are specified using SI convention.

Create a ExampleHelperGazeboSpawnedModel object for the mobile base and change its
orientation state. Manually rotate the TurtleBot by 90 degrees (π/2 radians) so that it is directly
facing the wall.

 turtleBot = ExampleHelperGazeboSpawnedModel("turtlebot3_burger",gazebo);
 setState(turtleBot,"orientation",[0 0 pi/2]);

1 ROS Featured Examples

1-152

Start TurtleBot Obstacle Avoidance

This section describes a simple way to create autonomous behavior on a TurtleBot in Gazebo. Use a
basic obstacle avoidance behavior for the TurtleBot. The behavior is to drive forward and turn when
the robot gets very close to an obstacle detected by the laser scanner.

Create global variables for the publisher and publisher message so they can be accessed by the
control algorithm.

 global robot
 global velmsg

Create the publisher for velocity and the ROS message to carry the information.

 robot = rospublisher("/cmd_vel");
 velmsg = rosmessage(robot);

Subscribe to the laser scan topic.

 timerHandles.sub = rossubscriber("/scan");

Create a timer to control the main control loop of the TurtleBot.

 Test Robot Autonomy in Simulation

1-153

 t = timer("TimerFcn",{@exampleHelperGazeboAvoidanceTimer,timerHandles},"Period",0.1,"ExecutionMode","fixedSpacing");

The timer callback function, exampleHelperGazeboAvoidanceTimer defines the laser scan
callback function and executes a basic algorithm to allow the TurtleBot to avoid hitting objects as it
moves.

Start the timer.

start(t)

The TurtleBot drives toward the wall. Once it gets very close to the wall, it must turn left to avoid
running into it.

Note: If the TurtleBot crashes into the wall, the laser scan is probably not being published through
Gazebo. Restart your Gazebo session and try again.

Add Objects

You can still make changes to the world while the TurtleBot is moving. Add a new wall to the world. If
you add it soon enough, it can block the TurtleBot so that it avoids hitting the wall.

1 ROS Featured Examples

1-154

spawnModel(gazebo,wall,[-5.85 0.15 0],[0, 0, pi/2]);
pause(20) % TurtleBot avoids walls for 20 seconds

Remove Models and Shut Down

Stop the timer to halt the robot algorithm.

stop(t)
delete(t)

Find all objects in the world and remove the ones added manually.

list = getSpawnedModels(gazebo)

list = 4×1 cell
 {'ground_plane' }
 {'turtlebot3_burger'}
 {'grey_wall' }
 {'grey_wall_0' }

Remove the two walls, using the following commands:

 Test Robot Autonomy in Simulation

1-155

removeModel(gazebo,"grey_wall");
removeModel(gazebo,"grey_wall_0");

Clear the workspace of publishers, subscribers, and other ROS-related objects when you are finished
with them.

clear

Use rosshutdown once you are done working with the ROS network. Shut down the global node and
disconnect from Gazebo.

rosshutdown

Shutting down global node /matlab_global_node_19208 with NodeURI http://192.168.178.1:53310/

When finished, close the Gazebo window on your virtual machine.

1 ROS Featured Examples

1-156

Communicate with the TurtleBot
This example introduces the TurtleBot® platform and the ways in which MATLAB® users can
interact with it. Specifically, the code in this example demonstrates how to publish messages to the
TurtleBot (such as velocities) and how to subscribe to topics that the TurtleBot publishes (such as
odometry).

The TurtleBot must be running for this example to work.

Prerequisites: “Get Started with Gazebo and a Simulated TurtleBot” on page 1-129 or “Get Started
with a Real TurtleBot” on page 1-70

Connect to the TurtleBot

The TurtleBot must be running. If you are using a real TurtleBot and followed the hardware setup
steps in “Get Started with a Real TurtleBot” on page 1-70, the robot is running. If you are using a
TurtleBot in simulation and followed the setup steps in “Get Started with Gazebo and a Simulated
TurtleBot” on page 1-129, launch one of the Gazebo® worlds from the desktop (Gazebo Office, for
instance).

In your MATLAB instance on the host computer, run the following command. Replace ipaddress
with the IP address of the TurtleBot. This line initializes ROS and connects to the TurtleBot.

ipaddress = "http://192.168.178.132:11311";
rosinit(ipaddress)

Initializing global node /matlab_global_node_00696 with NodeURI http://192.168.178.1:64340/

If the network you are using to connect to the TurtleBot is not your default network adapter, you can
manually specify the IP address of the adapter that is used to connect to the robot. This might happen
if you use a Wireless network, but also have an active Ethernet connection. Replace
IP_OF_TURTLEBOT with the IP address of the TurtleBot and IP_OF_HOST_COMPUTER with the IP
address of the host adapter that is used to connect to the robot:

rosinit("IP_OF_TURTLEBOT","NodeHost","IP_OF_HOST_COMPUTER");

Display all the available ROS topics using:

rostopic list

If you do not see any topics, then the network has not been set up properly. Refer to the beginning of
this document for network setup steps.

Move the Robot

You can control the movement of the TurtleBot by publishing a message to the /cmd_vel topic. The
message has to be of type geometry_msgs/Twist, which contains data specifying desired linear and
angular velocities. The TurtleBot's movements can be controlled through two different values: the
linear velocity along the X-axis controls forward and backward motion and the angular velocity
around the Z-axis controls the rotation speed of the robot base.

Set a variable velocity to use for a brief TurtleBot movement.

velocity = 0.1; % meters per second

 Communicate with the TurtleBot

1-157

Create a publisher for the /cmd_vel topic and the corresponding message containing the velocity
values.

robotCmd = rospublisher("/cmd_vel") ;
velMsg = rosmessage(robotCmd);

Set the forward velocity (along the X-axis) of the robot based on the velocity variable and publish
the command to the robot. Let it move for a moment, and then bring it to a stop.

velMsg.Linear.X = velocity;
send(robotCmd,velMsg)
pause(4)
velMsg.Linear.X = 0;
send(robotCmd,velMsg)

To view the type of the message published by the velocity topic, execute the following:

rostopic type /cmd_vel

geometry_msgs/Twist

The topic expects messages of type geometry_msgs/Twist, which is exactly the type of the velMsg
created above.

To view which nodes are publishing and subscribing to a given topic, use the command: rostopic
info TOPICNAME. The following command lists the publishers and subscribers for the velocity topic.
MATLAB is listed as one of the publishers.

 rostopic info /cmd_vel

Type: geometry_msgs/Twist

Publishers:
* /matlab_global_node_00696 (http://192.168.178.1:64340/)

Subscribers:
* /gazebo (http://192.168.178.132:41095/)

1 ROS Featured Examples

1-158

Receive Robot Position and Orientation

The TurtleBot uses the /odom topic to publish its current position and orientation (collectively
denoted as pose). Since the TurtleBot is not equipped with a GPS system, the pose will be relative to
the pose that the robot had when it was first turned on.

Create a subscriber for the odometry messages

odomSub = rossubscriber("/odom");

Wait for the subscriber to return data, then extract the data and assign it to variables x, y, and z:

odomMsg = receive(odomSub,3);
pose = odomMsg.Pose.Pose;
x = pose.Position.X;
y = pose.Position.Y;
z = pose.Position.Z;

Note: If you see an error, then it is likely that the receive command timed out. Make sure that
odometry is being published and that your network is set up properly.

Display the x, y, and z values

[x y z]

ans = 1×3

 0.3883 0.0003 -0.0010

The orientation of the TurtleBot is stored as a quaternion in the Orientation property of pose. Use
quat2eul (Robotics System Toolbox) to convert into the more convenient representation of Euler
angles. To display the current orientation, theta, of the robot in degrees, execute the following lines.

quat = pose.Orientation;
angles = quat2eul([quat.W quat.X quat.Y quat.Z]);
theta = rad2deg(angles(1))

theta = -0.0274

Receive Lidar Data

Subscribe to the lidar topic:

lidarSub = rossubscriber("/scan");

After subscribing to the lidar topic, wait for the data and then display it with plot.

scanMsg = receive(lidarSub);
figure
plot(scanMsg)

 Communicate with the TurtleBot

1-159

To continuously display updating lidar scans while the robot turns for a short duration, use the
following while loop:

velMsg.Angular.Z = velocity;
send(robotCmd,velMsg)
tic
while toc < 20
 scanMsg = receive(lidarSub);
 plot(scanMsg)
end

1 ROS Featured Examples

1-160

velMsg.Angular.Z = 0;
send(robotCmd,velMsg)

Disconnect from the Robot

Clear the workspace of publishers, subscribers, and other ROS-related objects when you are finished
with them.

clear

Use rosshutdown once you are done working with the ROS network. Shut down the global node and
disconnect from the TurtleBot.

rosshutdown

Shutting down global node /matlab_global_node_00696 with NodeURI http://192.168.178.1:64340/

Next Steps

Refer to the next example: “Explore Basic Behavior of the TurtleBot” on page 1-162

 Communicate with the TurtleBot

1-161

Explore Basic Behavior of the TurtleBot
This example helps you to explore basic autonomy with the TurtleBot®. The described behavior
drives the robot forward and changes its direction when there is an obstacle. You will subscribe to the
laser scan topic and publish the velocity topic to control the TurtleBot.

Prerequisites: “Communicate with the TurtleBot” on page 1-157

Connect to the TurtleBot

Make sure you have a TurtleBot running either in simulation through Gazebo® or on real hardware.
Refer to “Get Started with Gazebo and a Simulated TurtleBot” on page 1-129 or “Get Started with a
Real TurtleBot” on page 1-70 for the startup procedure. This example uses the Gazebo-simulated
Turtlebot.

In the downloaded virtual machine, click the Gazebo Office shortcut to startup the world.

Initialize ROS. Connect to the TurtleBot by replacing ipaddress with the IP address of the
TurtleBot.

ipaddress = 'http://192.168.203.132:11311'

ipaddress =
'http://192.168.203.132:11311'

rosinit(ipaddress)

Initializing global node /matlab_global_node_48605 with NodeURI http://192.168.203.1:60009/

Create a publisher for the robot's velocity and create a message for that topic.

robot = rospublisher('/cmd_vel');
velmsg = rosmessage(robot);

Receive Scan Data

Make sure that you start the lidar and camera if you are working with real TurtleBot hardware. The
command to start the lidar and camera is:

 roslaunch turtlebot3_bringup turtlebot3_core.launch
 roslaunch turtlebot3_bringup turtlebot3_lidar.launch
 roslaunch turtlebot3_bringup turtlebot3_rpicamera.launch

You must execute the command in a terminal on the TurtleBot. The TurtleBot uses the LDS-01 Lidar
to construct a laser scan that is published on the /scan topic. For the remainder of this example, the
term laser scan refers to data published on this topic.

Subscribe to the topic /scan.

laser = rossubscriber('/scan');

Wait for one laser scan message to arrive and then display it.

scan = receive(laser,3)

scan =
 ROS LaserScan message with properties:

1 ROS Featured Examples

1-162

 MessageType: 'sensor_msgs/LaserScan'
 Header: [1×1 Header]
 AngleMin: 0
 AngleMax: 6.2832
 AngleIncrement: 0.0175
 TimeIncrement: 0
 ScanTime: 0
 RangeMin: 0.1200
 RangeMax: 3.5000
 Ranges: [360×1 single]
 Intensities: [360×1 single]

 Use showdetails to show the contents of the message

figure
plot(scan);

If you see an error, it is possible that the laser scan topic is not receiving any data. If you are running
in simulation, try restarting Gazebo. If you are using hardware, make sure that you started the lidar
and camera properly.

Run the following lines of code, which plot a live laser scan feed for ten seconds. Move an object in
front of the TurtleBot and bring it close enough until it no longer shows up in the plot window. The
laser scan has a limited range because of hardware limitations. The LDS-01 lidar has a minimum

 Explore Basic Behavior of the TurtleBot

1-163

sensing range of 0.12 meters and a maximum range of 3.5 meters. Any objects outside these limits
will not be detected by the sensor.

tic;
while toc < 10
 scan = receive(laser,3);
 plot(scan);
end

Simple Obstacle Avoidance

Based on the distance readings from the laser scan, you can implement a simple obstacle avoidance
algorithm. You can use a simple while loop to implement this behavior.

Set some parameters that will be used in the processing loop. You can modify these values for
different behavior.

spinVelocity = 0.6; % Angular velocity (rad/s)
forwardVelocity = 0.1; % Linear velocity (m/s)
backwardVelocity = -0.02; % Linear velocity (reverse) (m/s)
distanceThreshold = 0.6; % Distance threshold (m) for turning

Run a loop to move the robot forward and compute the closest obstacles to the robot. When an
obstacle is within the limits of the distanceThreshold, the robot turns. This loop stops after 20
seconds of run time. CTRL+C (or Control+C on the Mac) also stops this loop.

 tic;
 while toc < 20

1 ROS Featured Examples

1-164

 % Collect information from laser scan
 scan = receive(laser);
 plot(scan);
 data = readCartesian(scan);
 x = data(:,1);
 y = data(:,2);
 % Compute distance of the closest obstacle
 dist = sqrt(x.^2 + y.^2);
 minDist = min(dist);
 % Command robot action
 if minDist < distanceThreshold
 % If close to obstacle, back up slightly and spin
 velmsg.Angular.Z = spinVelocity;
 velmsg.Linear.X = backwardVelocity;
 else
 % Continue on forward path
 velmsg.Linear.X = forwardVelocity;
 velmsg.Angular.Z = 0;
 end
 send(robot,velmsg);
 end

Disconnect from the Robot

Clear the workspace of publishers, subscribers, and other ROS related objects when you are finished
with them.

clear

 Explore Basic Behavior of the TurtleBot

1-165

Use rosshutdown once you are done working with the ROS network. Shut down the global node and
disconnect from the TurtleBot.

rosshutdown

Shutting down global node /matlab_global_node_48605 with NodeURI http://192.168.203.1:60009/

More Information

The laser scan has a minimum range at which it no longer sees objects in its way. That minimum is
somewhere around 0.12 meters from the lidar.

The laser scan cannot detect glass walls. Following is an image from the camera:

Here is the corresponding laser scan:

1 ROS Featured Examples

1-166

The trash can is visible, but you cannot see the glass wall. When you use the TurtleBot in areas with
windows or walls that the TurtleBot might not be able to detect, be aware of the limitations of the
laser scan.

Next Steps

Refer to the next example: “Control the TurtleBot with Teleoperation” on page 1-168

 Explore Basic Behavior of the TurtleBot

1-167

Control the TurtleBot with Teleoperation
This example shows keyboard control of the TurtleBot® through the use of the
ExampleHelperTurtleBotCommunicator class. The instructions describe how to set up the object
and how to start the keyboard control. Instructions on how to use keyboard control are displayed
when the function is launched. To change parameters of the function, edit the
exampleHelperTurtleBotKeyboardControl function or the
ExampleHelperTurtleBotKeyInput class. For an introduction to using the TurtleBot with
MATLAB®, see the getting started examples (“Get Started with a Real TurtleBot” on page 1-70 or
“Get Started with Gazebo and a Simulated TurtleBot” on page 1-129)

Prerequisites: “Communicate with the TurtleBot” on page 1-157, “Explore Basic Behavior of the
TurtleBot” on page 1-162

Hardware Support Package for TurtleBot

This example gives an overview of working with a TurtleBot using its native ROS interface. The ROS
Toolbox™ Support Package for TurtleBot based Robots provides a more streamlined interface to
TurtleBot2 hardware.

To install the support package, open Add-Ons > Get Hardware Support Packages on the MATLAB
Home tab and select ROS Toolbox Support Package for TurtleBot based Robots. Alternatively,
use the rosAddons command.

Connect to the TurtleBot

Make sure you have a TurtleBot running either in simulation through Gazebo® or on real hardware.
Refer to “Get Started with Gazebo and a Simulated TurtleBot” on page 1-129 or “Get Started with a
Real TurtleBot” on page 1-70 for the startup procedure. If you are using simulation, Gazebo Office
is good for exploring.

Initialize ROS. Connect to the TurtleBot by replacing ipaddress with the IP address of the
TurtleBot.

ipaddress = "http://192.168.111.134:11311";
rosinit(ipaddress)

Initializing global node /matlab_global_node_50694 with NodeURI http://192.168.111.1:59298/

If you are working with real TurtleBot2 hardware, make sure that you start the Kinect® camera. Run
the following in a terminal on the TurtleBot:

roslaunch turtlebot_bringup 3dsensor.launch

There may be some functionality, sensor, and topic name differences between TurtleBot versions. Be
sure to check which version is being used and the expected topics when controlling it.

turtleBotVersion = 3; % Gazebo Office world uses TurtleBot3 Burger model

Subscribe to the odometry and laser scan topics and make sure that you can receive messages on
these topics.

handles.odomSub = rossubscriber("/odom","BufferSize",25);
receive(handles.odomSub,3);
handles.laserSub = rossubscriber("/scan","BufferSize",5);
receive(handles.laserSub,3);

1 ROS Featured Examples

1-168

Create a publisher for controlling the robot velocity.

if turtleBotVersion == 3
 velTopic = "/cmd_vel";
else
 velTopic = "/mobile_base/commands/velocity";
end
handles.velPub = rospublisher(velTopic);

Control the Robot

Run the exampleHelperTurtleBotKeyboardControl function, which allows you to control the
TurtleBot with the keyboard. Mark the inserted code example as code (highlight and press 'Alt
+Enter') to execute the function.

exampleHelperTurtleBotKeyboardControl(handles);

Following are samples of the Command Window, the world plot, and the Gazebo world after some
keyboard teleoperation by the user:

 Control the TurtleBot with Teleoperation

1-169

If you move the TurtleBot too quickly, the obstacle plotting can become messy because of relative
inaccuracies in the odometry topic at high speeds. Here is an example of a messy world plot:

1 ROS Featured Examples

1-170

A sample plot of a real TurtleBot moving around an office space is shown:

 Control the TurtleBot with Teleoperation

1-171

Disconnect from the Robot

Once you have exited the function by pressing q, clear the publishers and subscribers on the host.

clear

Use rosshutdown once you are done working with the ROS network. Shut down the global node and
disconnect from the TurtleBot.

rosshutdown

Shutting down global node /matlab_global_node_50694 with NodeURI http://192.168.111.1:59298/

Next Steps

• Refer to the next example: “Obstacle Avoidance with TurtleBot and VFH” on page 1-173

1 ROS Featured Examples

1-172

Obstacle Avoidance with TurtleBot and VFH
This example shows how to use a TurtleBot® with Vector Field Histograms (VFH) to perform obstacle
avoidance when driving a robot in an environment. The robot wanders by driving forward until
obstacles get in the way. The controllerVFH (Navigation Toolbox) object computes steering
directions to avoid objects while trying to drive forward.

Optional: If you do not already have a TurtleBot (simulated or real) set up, install a virtual machine
with the Gazebo simulator and TurtleBot package. See “Get Started with Gazebo and a Simulated
TurtleBot” on page 1-129 to install and set up a TurtleBot in Gazebo.

Connect to the TurtleBot using the IP address obtained from setup.

rosinit('192.168.203.129',11311)

Initializing global node /matlab_global_node_41200 with NodeURI http://192.168.203.1:54964/

Create a publisher and subscriber to share information with the VFH class. The subscriber receives
the laser scan data from the robot. The publisher sends velocity commands to the robot.

The topics used are for the simulated TurtleBot. Adjust the topic names for your specific robot.

laserSub = rossubscriber('/scan');
[velPub, velMsg] = rospublisher('/mobile_base/commands/velocity');

Set up VFH object for obstacle avoidance. Set the UseLidarScan property to true. Specify
algorithm properties for robot specifications. Set target direction to 0 in order to drive straight.

vfh = controllerVFH;
vfh.UseLidarScan = true;
vfh.DistanceLimits = [0.05 1];
vfh.RobotRadius = 0.1;
vfh.MinTurningRadius = 0.2;
vfh.SafetyDistance = 0.1;

targetDir = 0;

Set up a Rate object using rateControl (Navigation Toolbox), which can track the timing of your
loop. This object can be used to control the rate the loop operates as well.

rate = rateControl(10);

Create a loop that collects data, calculates steering direction, and drives the robot. Set a loop time of
30 seconds.

Use the ROS subscriber to collect laser scan data. Create a lidarScan object by specifying the
ranges and angles. Calculate the steering direction with the VFH object based on the input laser scan
data. Convert the steering direction to a desired linear and an angular velocity. If a steering direction
is not found, the robot stops and searches by rotating in place.

Drive the robot by sending a message containing the angular velocity and the desired linear velocity
using the ROS publisher.

while rate.TotalElapsedTime < 30

 % Get laser scan data

 Obstacle Avoidance with TurtleBot and VFH

1-173

 laserScan = receive(laserSub);
 ranges = double(laserScan.Ranges);
 angles = double(laserScan.readScanAngles);

 % Create a lidarScan object from the ranges and angles
 scan = lidarScan(ranges,angles);

 % Call VFH object to computer steering direction
 steerDir = vfh(scan, targetDir);

 % Calculate velocities
 if ~isnan(steerDir) % If steering direction is valid
 desiredV = 0.2;
 w = exampleHelperComputeAngularVelocity(steerDir, 1);
 else % Stop and search for valid direction
 desiredV = 0.0;
 w = 0.5;
 end

 % Assign and send velocity commands
 velMsg.Linear.X = desiredV;
 velMsg.Angular.Z = w;
 velPub.send(velMsg);
end

This code shows how you can use the Navigation Toolbox™ algorithms to control robots and react to
dynamic changes in their environment. Currently the loop ends after 30 seconds, but other conditions
can be set to exit the loop based on information on the ROS network (i.e. robot position or number of
laser scan messages).

Disconnect from the ROS network

rosshutdown

Shutting down global node /matlab_global_node_41200 with NodeURI http://192.168.203.1:54964/

1 ROS Featured Examples

1-174

Track and Follow an Object
In this example, you explore autonomous behavior that incorporates the Kinect® camera. This
algorithm involves the TurtleBot® looking for a blue ball and then staying at a fixed distance from the
ball. You incorporate safety features, such as bump and cliff sensing.

Running this example requires the Image Processing Toolbox™.

Prerequisites: “Communicate with the TurtleBot” on page 1-157, “Explore Basic Behavior of the
TurtleBot” on page 1-162, “Control the TurtleBot with Teleoperation” on page 1-168, “Obstacle
Avoidance with TurtleBot and VFH” on page 1-173

Hardware Support Package for TurtleBot

This example gives an overview of working with a TurtleBot using its native ROS interface. The ROS
Toolbox™ Support Package for TurtleBot based Robots provides a more streamlined interface to
TurtleBot. It allows you to:

Acquire sensor data and send control commands without explicitly calling ROS commands

Communicate transparently with a simulated robot in Gazebo or with a physical TurtleBot

To install the support package, open Add-Ons > Get Hardware Support Packages on the
MATLAB® Home tab and select ROS Toolbox™ Support Package for TurtleBot based Robots.
Alternatively, use the roboticsAddons (Robotics System Toolbox) command.

Connect to the TurtleBot

Make sure you have a TurtleBot running either in simulation through Gazebo® or on real hardware.
Refer to “Get Started with Gazebo and a Simulated TurtleBot” on page 1-129 or “Get Started with a
Real TurtleBot” on page 1-70 for the startup procedure. If you are using hardware, find a blue ball to
use for tracking. If you are using Gazebo®, the blue ball must be in the world in front of the robot
(make sure that you are using Gazebo Office world).

Initialize ROS. Connect to the TurtleBot by replacing ipaddress with the IP address of the TurtleBot

ipaddress = '192.168.111.134';
rosinit(ipaddress,11311)

Initializing global node /matlab_global_node_52081 with NodeURI http://192.168.111.1:56789/

Make sure that you have started the Kinect camera if you are working with real TurtleBot hardware.
The command to start the camera is:

roslaunch turtlebot_bringup 3dsensor.launch.

You must enter this in a terminal on the TurtleBot.

Create subscribers for the color camera, the cliff sensor, and the bumper sensor.

Create publishers for emitting sound and for controlling the robot velocity messages.

handles.colorImgSub = exampleHelperTurtleBotEnableColorCamera;

Successfully Enabled Camera (raw image)

 Track and Follow an Object

1-175

useHardware = exampleHelperTurtleBotIsPhysicalRobot;
if useHardware
 handles.cliffSub = rossubscriber('/mobile_base/events/cliff','BufferSize', 5);
 handles.bumpSub = rossubscriber('/mobile_base/sensors/bumper_pointcloud', 'BufferSize', 5);
 handles.soundPub = rospublisher('/mobile_base/commands/sound', 'kobuki_msgs/Sound');
 handles.velPub = rospublisher('/mobile_base/commands/velocity');
else
 % Cliff sensor, bumper sensor and sound emitter are only present in
 % real TurtleBot hardware
 handles.cliffSub = [];
 handles.bumpSub = [];
 handles.soundPub = [];
 handles.velPub = rospublisher('/cmd_vel');
end

Tune the Blue Ball Detection

Set the parameters for image filtering. Add them to a data structure that will be used in the
algorithm.

blueBallParams.blueMax = 120; % Maximum permissible deviation from pure blue
blueBallParams.darkMin = 30; % Minimum acceptable darkness value

Try to visualize the ball to make sure that the ball-finding parameters can locate it. Run the
exampleHelperTurtleBotFindBlueBall function to see if a circle is found. If so, c and m are
assigned values. ball is a binary image created by applying blueness and darkness filters on the
image. View ball to see if the blue ball was properly isolated:

latestImg = readImage(handles.colorImgSub.LatestMessage);
[c,~,ball] = exampleHelperTurtleBotFindBlueBall(latestImg,blueBallParams,useHardware);

Use this example helper to display the real and binary image in a figure and plot a red plus at the
center of the ball.

exampleHelperTurtleBotPlotObject(latestImg,ball,c);

1 ROS Featured Examples

1-176

If the ball is not found, try increasing or decreasing blueBallParams.blueMax and
blueBallParams.darkMin. View the plot again until the ball is found. This method is a good way to
fine tune the ball-finding algorithm before using the controller.

In Gazebo, the parameters used might not find the ball, because the threshold values are too
generous. The Gazebo image (left figures) includes parts of the wall and other objects in the white
space. The real image (right figures) looks very saturated with white. Try changing the parameters so
that they are more restrictive:

blueBallParams.blueMax = 200; % Maximum permissible deviation from pure blue
blueBallParams.darkMin = 220; % Minimum acceptable darkness value
latestImg = readImage(handles.colorImgSub.LatestMessage);
[c,~,ball] = exampleHelperTurtleBotFindBlueBall(latestImg,blueBallParams,useHardware);

Use this example helper to display the figures.

exampleHelperTurtleBotPlotObject(latestImg,ball,c);

 Track and Follow an Object

1-177

Now the parameters are too restrictive. Part of the ball does not even show up in the Gazebo image,
and you see nothing in the real image. If you tune the parameters further you can find a middle
ground. In Gazebo, the following parameters should work well. With hardware, ambient lighting
might require you to spend more time fine tuning the parameters.

 blueBallParams.blueMax = 30; % Maximum permissible deviation from pure blue
 blueBallParams.darkMin = 90; % Minimum acceptable darkness value
 latestImg = readImage(handles.colorImgSub.LatestMessage);
 [c,~,ball] = exampleHelperTurtleBotFindBlueBall(latestImg,blueBallParams, useHardware);

Use this example helper to display the figures.

 exampleHelperTurtleBotPlotObject(latestImg,ball,c);

1 ROS Featured Examples

1-178

Tuning the color thresholds is challenging when compared to tuning them in a simulated environment
like Gazebo.

After you have fine-tuned the parameters, add them to the handles object, which will be used by the
ball tracking algorithm.

 handles.params = blueBallParams;

Test Fixed-Distance Controller

Set controller gains for the TurtleBot. The TurtleBot uses a PID controller to stay at a constant
distance from the ball.

The first set of controller gains is good for a TurtleBot in Gazebo. The second set is good for a
TurtleBot in real hardware. Adjust the gains as you see fit.

Here is a compact way to assign the struct values.

 Track and Follow an Object

1-179

Effective gains for Gazebo simulation:

 gains.lin = struct('pgain',1/100,'dgain',1/100,'igain',0,'maxwindup',0','setpoint',0.65);
 gains.ang = struct('pgain',1/400,'dgain',1/500,'igain',0,'maxwindup',0','setpoint',0.5);

Effective gains for TurtleBot hardware:

gains.lin = struct('pgain',1/100,'dgain',1/1000,'igain',0,'maxwindup',0','setpoint',0.75);
gains.ang = struct('pgain',1/100,'dgain',1/3000,'igain',0,'maxwindup',0','setpoint',0.5);

Make sure to add the gains struct to the handles variable.

handles.gains = gains;

Define a timer to execute the ball tracking behavior through the callback. Define the stop function to
shut down ROS. Include the handles in the callback function for the timer:

timer2 = timer('TimerFcn',{@exampleHelperTurtleBotTrackingTimer,handles,useHardware},'Period',0.1,'ExecutionMode','fixedSpacing');
timer2.StopFcn = {@exampleHelperTurtleBotStopCallback};

Start the timer using the following command. You see the TurtleBot begin to move around the world,
searching for the ball. When it finds it in the Kinect image, the robot will use the controller to stay at
a fixed distance.

start(timer2);
pause(1);

The bump sensor does not activate in simulation, so the TurtleBot might not recover when it hits a
wall.

If you want to move the blue ball around, use the following commands to apply a force:

g = ExampleHelperGazeboCommunicator();
 ballhandle = ExampleHelperGazeboSpawnedModel('unit_sphere_1',g)
 duration = 2;
 forceVector = [0 4 0];
 applyForce(ballhandle,'link',duration,forceVector)

If you want to further explore Gazebo control of the simulation refer to “Add, Build, and Remove
Objects in Gazebo” on page 1-135.

Stop Robot Motion

To stop the timer and autonomous behavior, use the following command:

stop(timer2);

If the timer is cleared from the workspace before it is stopped, you must delete it another way. To
stop all timers (even timers in the background) execute the following command:

delete(timerfindall)

Clear the workspace of publishers, subscribers, and other ROS related objects when you are finished
with them

clear

1 ROS Featured Examples

1-180

More Information

NOTE: Code in this section is not for MATLAB command line execution

In this example, the organization of supporting files allows you great flexibility in customizing and re-
purposing the code. You can alter the ball-finding parameters and the controller gains by changing
values in the handles struct. This example incorporates a timer that manages all aspects of the
control algorithm. This timer is the exampleHelperTurtleBotTrackingTimer. This timer has
Name-Value pairs of Period and ExecutionMode that are set to determine how often the timer
callback is called. Additionally, the stop callback is used. You can incorporate additional callback
functions if you want.

The handles passed into the timer include params for ball-finding and gains for the controller.

The structure of exampleHelperTurtleBotTrackingTimer is simple. It is a basic state machine
with some initialization steps. The initialization function determines which tracking algorithm and
which controller to use when not in a cliff or bumper recovery state. The function is:

function [objectTrack, imgControl] = initControl()
 % INITCONTROL - Initialization function to determine which control
 % and object detection algorithms to use
 objectTrack = @exampleHelperTurtleBotFindBlueBall;
 imgControl = @exampleHelperTurtleBotPointController;

In this example the tracking function is exampleHelperTurtleBotFindBlueBall and the
controller is exampleHelperTurtleBotPointController You can replace this function and
controller with any user-defined functions that have the same input and output argument structure.
The input arguments for exampleHelperTurtleBotFindBlueBall are a color image and a struct
of ball-finding parameters. The output arguments are a center, magnitude, and binary image of the
sought object. The input arguments for exampleHelperTurtleBotPointController are object
center, magnitude (though magnitude is not used in the example), image size, and controller gains (a
struct). The output arguments are linear and angular velocities.

The basic state machine used in exampleHelperTurtleBotTrackingTimer is:

switch state
 case ExampleHelperTurtleBotStates.Seek
 % Object-finding state
 [center, scale] = findObject(handles.Tbot.ImColor,handles.params);
 % Wander if no circle is found, target the circle if it exists
 if isempty(center)
 [linearV, angularV] = exampleHelperTurtleBotWanderController();
 else
 [linearV, angularV] = imageControl(center, scale, size(handles.Tbot.ImColor),handles.gains);
 setSound(handles.Tbot,2);
 end
 state = ExampleHelperTurtleBotStates.Seek;
 case ExampleHelperTurtleBotStates.Bumper
 % Bumper contact state
 case ExampleHelperTurtleBotStates.Spin
 % Spin state
 case ExampleHelperTurtleBotStates.Cliff
 % Cliff avoidance
end

 Track and Follow an Object

1-181

You can add or remove cases from the state machine. If you want to change the state names, use the
ExampleHelperTurtleBotStates class.

The ball-finding algorithm is modular and alterable. It uses two image filters (one on darkness and
one on blueness) masked together to isolate the blue ball. You can change the masks to find a red or
green ball instead. If you want to explore other forms of shape-tracking, the basic workflow remains
the same.

The blue channel is isolated (with some scaling factors) and a threshold is applied to produce a binary
image mask.

blueImg = img(:,:,1)/2 + img(:,:,2)/2 - img(:,:,3)/2;
blueThresh = blueImg < params.blueMax;

These commands isolate the inverse of the blue (with different scaling) and emphasize darkness. A
threshold is applied.

darkIso = -img(:,:,1)/2 - img(:,:,2)/2 + 3*img(:,:,3) - 2*rgb2gray(img);
darkThresh = darkIso > params.darkMin;

Mask the two binary images together to isolate the dark blue ball.

ball1 = blueThresh & darkThresh;

The constants and scaling factors on the image are user-determined to isolate a specific color. You
can experiment with various combinations.

1 ROS Featured Examples

1-182

You can also find contiguous regions in the filtered image using regionprops, which is part of the
Image Processing Toolbox.

s = regionprops(ball1, {'Centroid','Area','EquivDiameter'});

There are additional steps to find the ball from this region, which you can find in
exampleHelperTurtleBotFindBlueBall.

The exampleHelperTurtleBotPointController function uses the ExampleHelperPIDControl
class to keep a specified point (in this case the location of the center of the ball) at an exact location
within the image.

The modularity and flexibility of the example code allows you to experiment with your own algorithms
and functions.

 Track and Follow an Object

1-183

ROS 2 Featured Examples

2

Get Started with ROS 2
Robot Operating System 2 (ROS 2) is the second version of ROS, which is a communication interface
that enables different parts of a robot system to discover, send, and receive data. MATLAB® support
for ROS 2 is a library of functions that allows you to exchange data with ROS 2 enabled physical
robots or robot simulators such as Gazebo®. ROS 2 is built on Data Distribution Standard (DDS)
which is an end-to-end middleware that provides features such as discovery, serialization and
transportation. These features align with the design principles of ROS 2 such as distributed discovery
and control over different "Quality of Service" options for transportation. DDS uses Real Time
Publish-Subscribe (RTPS) protocol which provides communication over unreliable network protocols
such as UDP. For more information, see RTPS.

This example shows how to:

• Set up ROS 2 within MATLAB
• Get information about capabilities in a ROS 2 network
• Get information about ROS 2 messages

To learn about ROS, see “Get Started with ROS” on page 1-2.

ROS 2 Terminology

• A ROS 2 network comprises different parts of a robot system (such as a planner or a camera
interface) that communicate over ROS 2 network. The network can be distributed over several
machines.

• A ROS 2 node is an entity that contains a collection of related ROS 2 capabilities (such as
publishers and subscribers). A ROS 2 network can have many ROS 2 nodes.

• Publishers and subscribers are different kinds of ROS 2 entities that process data. They exchange
data using messages.

• A publisher sends messages to a specific topic (such as "odometry"), and subscribers to that topic
receive those messages. There can be multiple publishers and subscribers associated with a single
topic.

• A Domain is the physical segmentation of network. It is identified by a unique integer value known
as Domain ID. By default the Domain ID is 0.

• Every node in ROS 2 network on creation advertises its presence to other nodes in the same
Domain ID only.

• ROS 2 network is built on Data Distribution Standard (DDS) which makes it possible to connect
multiple nodes across distributed network.

• RTPS (Real Time publisher-subscriber) protocol provides ROS 2 network with capabilities to send
messages in unreliable network conditions.

• ROS 2 offers variety of Quality of Service (QoS) policies that allow you to tune your
communication between nodes. For more information, see “Manage Quality of Service Policies in
ROS 2” on page 2-21.

For more information, see Robot Operating System2 (ROS 2) and the Concepts section on the ROS 2
website.

Initialize ROS 2 Network

Unlike ROS, ROS 2 does not require initialization in MATLAB. The ROS 2 network automatically
starts with creation of nodes.

2 ROS 2 Featured Examples

2-2

https://fast-rtps.docs.eprosima.com/en/latest/
https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/Concepts/#conceptshome

Use ros2node to create a node.

test1 = ros2node("/test1")

test1 =
 ros2node with properties:

 Name: '/test1'
 ID: 0

Use ros2 node list to see all nodes in the ROS 2 network.

ros2 node list

/test1

Use clear to shutdown the node in ROS 2 network.

clear test1

Use exampleHelperROS2CreateSampleNetwork to populate the ROS network with three
additional nodes with sample publishers and subscribers.

exampleHelperROS2CreateSampleNetwork

Use ros2 node list again, and observe that there are three new nodes, node_1, node_2, and
node_3).

ros2 node list

/node_1
/node_2
/node_3

A visual representation of the current state of the ROS 2 network is shown below. Use it as a
reference when you explore this sample network in the remainder of the example.

 Get Started with ROS 2

2-3

Topics

Use ros2 topic list to see available topics in the ROS 2 network. Observe that there are three
active topics: /pose, /parameter_events and /scan. The topic /parameter_events is a global
topic which is always present in the ROS 2 network. It is used by nodes to monitor or change
parameters in the network. The other two topics /scan and /pose were created as part of the sample
network.

ros2 topic list

/parameter_events
/pose
/scan

Each topic is associated with a message type. Use ros2 topic list -t to see the message type of
the topics.

ros2 topic list -t

 Topic MessageType
 _____________________ _________________________________

 {'/parameter_events'} {'rcl_interfaces/ParameterEvent'}

2 ROS 2 Featured Examples

2-4

 {'/pose' } {'geometry_msgs/Twist' }
 {'/scan' } {'sensor_msgs/LaserScan' }

Messages

Publishers and subscribers use ROS 2 messages to exchange information. Each ROS 2 message has
an associated message type that defines the datatypes and layout of information in that message. For
more information, see “Work with Basic ROS 2 Messages” on page 2-11.

Use ros2 msg show to view the properties of a message type. The geometry_msgs/Twist
message type has two properties, Linear and Angular. Each property is a message of type
geometry_msgs/Vector3, which in turn has three properties of type double.

ros2 msg show geometry_msgs/Twist

This expresses velocity in free space broken into its linear and angular parts.

Vector3 linear
Vector3 angular

ros2 msg show geometry_msgs/Vector3

This represents a vector in free space.

float64 x
float64 y
float64 z

Use ros2 msg list to see the full list of message types available in MATLAB.

Disconnect From ROS 2 Network

Use exampleHelperROS2ShutDownSampleNetwork to remove the sample nodes, publishers, and
subscribers from the ROS 2 network. To remove your own nodes, use clear with the node, publisher,
or subscriber object.

exampleHelperROS2ShutDownSampleNetwork

Next Steps

• “Connect to a ROS 2 Network” on page 2-6

 Get Started with ROS 2

2-5

Connect to a ROS 2 Network
A ROS 2 network consists of a multiple ROS 2 nodes. Unlike ROS where the ROS master facilitates
the communication by keeping track of all active ROS entities, ROS 2 is based on Data Distribution
Standard (DDS) which is an end-to-end middleware that provides features such as discovery,
serialization, and transportation. These features align with the design principles of ROS 2 such as
distributed discovery and control over different "Quality of Service" options for transportation.

To connect to a ROS 1 network, see “Connect to a ROS Network” on page 1-7.

When you work with ROS 2, you typically follow these steps:

• Connect to a ROS 2 network. To connect to a ROS 2 network, you have to create a ROS 2 node in
MATLAB specifying the network domain ID.

• Exchange Data. Once connected, MATLAB exchanges data with other ROS 2 nodes in the same
domain ID through publishers and subscribers.

• Disconnect from the ROS 2 network. Clearing all references to the nodes, publishers, and
subscribers removes MATLAB from the ROS 2 network.

Create a ROS 2 Node in the Default Domain

Use ros2node to create a node in the default domain, which uses the ID of 0. Nodes communicate
with other nodes in the same domain, and are unaware of nodes in other domains.

defaultNode = ros2node("/default_node")

defaultNode =
 ros2node with properties:

 Name: '/default_node'
 ID: 0

Use clear to remove the reference to the node, allowing it to be deleted from the ROS 2 network.

clear defaultNode

Create a ROS 2 Node on a Different Domain

To create a node in non-default domain, explicitly specify the domain ID as a second input argument
to ros2node. Below newDomainNode is created in the domain specified by ID 25.

newDomainNode = ros2node("/new_domain_node",25)

newDomainNode =
 ros2node with properties:

 Name: '/new_domain_node'
 ID: 25

To view network information on a specific domain, provide the ID as a parameter to the ros2
function. The following command displays all nodes with domain ID 25.

ros2("node","list","DomainID",25)

/new_domain_node

2 ROS 2 Featured Examples

2-6

Change Default Domain ID

If the domain ID is not provided explicitly to the node or ros2 command, they use the value of the
ROS_DOMAIN_ID environment variable by default. Use getenv to see the current value. If that
environment variable is unset, or not set to a valid value, the default domain ID of 0 will be used.

getenv("ROS_DOMAIN_ID")

ans =

 0x0 empty char array

You can set ROS_DOMAIN_ID using the setenv command.

setenv("ROS_DOMAIN_ID","25")
envDomainNode = ros2node("/env_domain_node")

envDomainNode =
 ros2node with properties:

 Name: '/env_domain_node'
 ID: 25

The ros2 function provides information on the network specified by that environment variable. Use
ros2 node list to view nodes with domain ID 25.

ros2 node list

/env_domain_node
/new_domain_node

Reset the ROS_DOMAIN_ID to default.

setenv("ROS_DOMAIN_ID","")

Communication in ROS 2 Network

To connect to an existing ROS 2 network, create a node in the desired domain. The ROS 2 network
automatically detects any new nodes created in the same domain in a mechanism called discovery.

Upon starting, each node in ROS 2 advertises its presence to other nodes in the same domain. The
other nodes respond to this advertisement by providing their information to the new node. Nodes
with communication objects like publishers and subscribers establish connections with other nodes if
they have corresponding objects with compatible Quality of Service (QoS) settings. For more
information on QoS settings, see “Manage Quality of Service Policies in ROS 2” on page 2-21.

Discovery is an ongoing process, which enables new nodes to join the network as they are created.
Each node is monitoring the ROS 2 network and act similarly to the ROS master in a ROS network.
Nodes also advertise their absence to other nodes when they go offline.

 Connect to a ROS 2 Network

2-7

The new ROS 2 node sends its advertisement to the existing nodes. The existing nodes respond to the
advertisement and then set up for ongoing communication.

ROS Communication Outside Subnet

A subnet is a logical partition of an IP network into multiple, smaller network segments. ROS 2 nodes
can communicate with other nodes within the same subnet. To detect the nodes present outside the
subnet, create a DEFAULT_FASTRTPS_PROFILE.xml file to configure the specific DDS
implementation MATLAB uses. Add the list of IP address of systems outside of the subnet with which
to communicate inside address elements. Note that for both systems to communicate, they each
must specify the other system's address in their respective DEFAULT_FASTRTPS_PROFILE.xml files.
Set the domainId element to the appropriate value for the network that is used for communication.

Keep this file in the MATLAB Current Working Directory. Systems using ROS 2 outside of MATLAB
should place this file in the same directory from which the ROS 2 application is run. Below is an
example DEFAULT_FASTRTPS_PROFILES.xml file.

<?xml version="1.0" encoding="UTF-8" ?>
<profiles>
 <participant profile_name="participant_win" is_default_profile="true">
 <rtps>
 <builtin>

2 ROS 2 Featured Examples

2-8

 <domainId>0</domainId>
 <initialPeersList>
 <locator>
 <kind>UDPv4</kind>
 <address>192.34.17.36</address>
 </locator>
 <locator>
 <kind>UDPv4</kind>
 <address>182.30.45.12</address>
 </locator>
 <locator>
 <kind>UDPv4</kind>
 <address>194.158.78.29</address>
 </locator>
 </initialPeersList>
 </builtin>
 </rtps>
 </participant>
</profiles>

ROS 2 advertises information to the nodes present in the systems with IP addresses listed inside the
DEFAULT_FASTRTPS_PROFILES.xml. No information from the nodes in the other machine outside
the subnet will be received if DEFAULT_FASTRTPS_PROFILES.xml is either not present or does not
contain the correct IP addresses.

 Connect to a ROS 2 Network

2-9

Next Steps

• “Exchange Data with ROS 2 Publishers and Subscribers” on page 2-17

2 ROS 2 Featured Examples

2-10

Work with Basic ROS 2 Messages
ROS messages are the primary container for exchanging data in ROS 2. Publishers and subscribers
exchange data using messages on specified topics to carry data between nodes. For more information
on sending and receiving messages, see “Exchange Data with ROS 2 Publishers and Subscribers” on
page 2-17.

To identify its data structure, each message has a message type. For example, sensor data from a
laser scanner is typically sent in a message of type sensor_msgs/LaserScan. Each message type
identifies the data elements that are contained in a message. Every message type name is a
combination of a package name, followed by a forward slash /, and a type name:

MATLAB® supports many ROS 2 message types that are commonly encountered in robotics
applications. This example examines some of the ways to create, inspect, and populate ROS 2
messages in MATLAB.

Prerequisites: “Get Started with ROS 2” on page 2-2, “Connect to a ROS 2 Network” on page 2-6

Find Message Types

Use exampleHelperROS2CreateSampleNetwork to populate the ROS 2 network with three nodes
and setup sample publishers and subscribers on specific topics.

exampleHelperROS2CreateSampleNetwork

Use ros2 topic list -t to find the available topics and their associated message type.

ros2 topic list -t

 Topic MessageType
 _____________________ _________________________________

 {'/parameter_events'} {'rcl_interfaces/ParameterEvent'}

To find out more about the topic message type, use ros2message to create an empty message of the
same type. ros2message supports tab completion for the message type. To quickly complete
message type names, type the first few characters of the name you want to complete, and then press
the Tab key.

scanData = ros2message("sensor_msgs/LaserScan")

scanData = struct with fields:
 MessageType: 'sensor_msgs/LaserScan'

 Work with Basic ROS 2 Messages

2-11

 header: [1x1 struct]
 angle_min: 0
 angle_max: 0
 angle_increment: 0
 time_increment: 0
 scan_time: 0
 range_min: 0
 range_max: 0
 ranges: 0
 intensities: 0

The created message, scanData, has many fields associated with data that you typically received
from a laser scanner. For example, the minimum sensing distance is stored in the range_min
property and the maximum sensing distance in range_max property.

You can now delete the created message.

clear scanData

To see a complete list of all message types available for topics and services, use ros2 msg list.

Explore Message Structure and Get Message Data

ROS 2 messages are represented as structures and the message data is stored in fields. MATLAB
provides convenient ways to find and explore the contents of messages.

Use ros2 msg show to view the definition of the message type.

ros2 msg show geometry_msgs/Twist

This expresses velocity in free space broken into its linear and angular parts.

Vector3 linear
Vector3 angular

If you subscribe to the /pose topic, you can receive and examine the messages that are sent.

controlNode = ros2node("/base_station");
poseSub = ros2subscriber(controlNode,"/pose","geometry_msgs/Twist")

poseSub =
 ros2subscriber with properties:

 TopicName: '/pose'
 LatestMessage: []
 MessageType: 'geometry_msgs/Twist'
 NewMessageFcn: []
 History: 'keeplast'
 Depth: 10
 Reliability: 'reliable'
 Durability: 'volatile'

Use receive to acquire data from the subscriber. Once a new message is received, the function
returns it and stores it in the posedata variable. Specify a timeout of 10 seconds for receiving
messages.

poseData = receive(poseSub,10)

2 ROS 2 Featured Examples

2-12

poseData = struct with fields:
 MessageType: 'geometry_msgs/Twist'
 linear: [1x1 struct]
 angular: [1x1 struct]

The message has a type of geometry_msgs/Twist. There are two other fields in the message:
linear and angular. You can see the values of these message fields by accessing them directly.

poseData.linear

ans = struct with fields:
 MessageType: 'geometry_msgs/Vector3'
 x: -0.0222
 y: 0.0047
 z: 0.0458

poseData.angular

ans = struct with fields:
 MessageType: 'geometry_msgs/Vector3'
 x: 0.0465
 y: -0.0342
 z: 0.0471

You can see that each of the values of these message fields is actually a message in itself.
geometry_msgs/Twist is a composite message made up of two geometry_msgs/Vector3
messages.

Data access for these nested messages works exactly the same as accessing the data in other
messages. Access the x component of the linear message using this command:

xPose = poseData.linear.x

xPose = -0.0222

Set Message Data

You can also set message property values. Create a message with type geometry_msgs/Twist.

twist = ros2message("geometry_msgs/Twist")

twist = struct with fields:
 MessageType: 'geometry_msgs/Twist'
 linear: [1x1 struct]
 angular: [1x1 struct]

The numeric properties of this message are initialized to 0 by default. You can modify any of the
properties of this message. Set the linear.y field to 5.

twist.linear.y = 5;

You can view the message data to make sure that your change took effect.

twist.linear

 Work with Basic ROS 2 Messages

2-13

ans = struct with fields:
 MessageType: 'geometry_msgs/Vector3'
 x: 0
 y: 5
 z: 0

Once a message is populated with your data, you can use it with publishers and subscribers.

Copy Messages

ROS 2 messages are structures. They can be copied directly to make a new message. The copy and
the original messages each have their own data.

Make a new empty message to convey temperature data, then make a copy for modification.

tempMsgBlank = ros2message("sensor_msgs/Temperature");
tempMsgCopy = tempMsgBlank

tempMsgCopy = struct with fields:
 MessageType: 'sensor_msgs/Temperature'
 header: [1x1 struct]
 temperature: 0
 variance: 0

Modify the temperature property of tempMsg and notice that the contents of tempMsgBlank
remain unchanged.

tempMsgCopy.temperature = 100

tempMsgCopy = struct with fields:
 MessageType: 'sensor_msgs/Temperature'
 header: [1x1 struct]
 temperature: 100
 variance: 0

tempMsgBlank

tempMsgBlank = struct with fields:
 MessageType: 'sensor_msgs/Temperature'
 header: [1x1 struct]
 temperature: 0
 variance: 0

It may be useful to keep a blank message structure around, and only set the specific fields when there
is data for it before sending the message.

thermometerNode = ros2node("/thermometer");
tempPub = ros2publisher(thermometerNode,"/temperature","sensor_msgs/Temperature");
tempMsgs(10) = tempMsgBlank; % Pre-allocate message structure array
for iMeasure = 1:10
 % Copy blank message fields
 tempMsgs(iMeasure) = tempMsgBlank;

 % Record sample temperature
 tempMsgs(iMeasure).temperature = 20+randn*3;

2 ROS 2 Featured Examples

2-14

 % Only calculate the variation once sufficient data observed
 if iMeasure >= 5
 tempMsgs(iMeasure).variance = var([tempMsgs(1:iMeasure).temperature]);
 end

 % Pass the data to subscribers
 send(tempPub,tempMsgs(iMeasure))
end
errorbar([tempMsgs.temperature],[tempMsgs.variance])

Save and Load Messages

You can save messages and store the contents for later use.

Get a new message from the subscriber.

poseData = receive(poseSub,10)

poseData = struct with fields:
 MessageType: 'geometry_msgs/Twist'
 linear: [1x1 struct]
 angular: [1x1 struct]

Save the pose data to a MAT file using the save function.

save("poseFile.mat","poseData")

 Work with Basic ROS 2 Messages

2-15

Before loading the file back into the workspace, clear the poseData variable.

clear poseData

Now you can load the message data by calling the load function. This loads the poseData from
above into the messageData structure. poseData is a data field of the struct.

messageData = load("poseFile.mat")

messageData = struct with fields:
 poseData: [1x1 struct]

Examine messageData.poseData to see the message contents.

messageData.poseData

ans = struct with fields:
 MessageType: 'geometry_msgs/Twist'
 linear: [1x1 struct]
 angular: [1x1 struct]

You can now delete the MAT file.

delete("poseFile.mat")

Disconnect From ROS 2 Network

Remove the sample nodes, publishers, and subscribers from the ROS 2 network.

exampleHelperROS2ShutDownSampleNetwork

Next Steps

• “Exchange Data with ROS 2 Publishers and Subscribers” on page 2-17
• “ROS 2 Custom Message Support” on page 2-39

2 ROS 2 Featured Examples

2-16

Exchange Data with ROS 2 Publishers and Subscribers
The primary mechanism for ROS 2 nodes to exchange data is to send and receive messages.
Messages are transmitted on a topic and each topic has a unique name in the ROS 2 network. If a
node wants to share information, it must use a publisher to send data to a topic. A node that wants to
receive that information must use a subscriber for that same topic. Besides its unique name, each
topic also has a message type, which determines the type of messages that are allowed to be
transmitted in the specific topic.

This publisher-subscriber communication has the following characteristics:

• Topics are used for many-to-many communication. Multiple publishers can send messages to the
same topic and multiple subscribers can receive them.

• Publisher and subscribers are decoupled through topics and can be created and destroyed in any
order. A message can be published to a topic even if there are no active subscribers.

This example shows how to publish and subscribe to topics in a ROS 2 network. It also shows how to:

• Wait until a new message is received, or
• Use callbacks to process new messages in the background

Prerequisites: “Get Started with ROS 2” on page 2-2, “Connect to a ROS 2 Network” on page 2-6

Subscribe and Wait for Messages

Create a sample ROS 2 network with several publishers and subscribers.

exampleHelperROS2CreateSampleNetwork

Use ros2 topic list to see which topics are available.

ros2 topic list

 Exchange Data with ROS 2 Publishers and Subscribers

2-17

/parameter_events

Assume you want to subscribe to the /scan topic. Use ros2subscriber to subscribe to the /scan
topic. Specify the name of the node with the subscriber. If the topic already exists in the ROS 2
network, ros2subscriber detects its message type automatically, so you do not need to specify it.

detectNode = ros2node("/detection");
pause(2)
laserSub = ros2subscriber(detectNode,"/scan");
pause(2)

Use receive to wait for a new message. Specify a timeout of 10 seconds. The output scanData
contains the received message data.

scanData = receive(laserSub,10);

You can now remove the subscriber laserSub and the node associated to it.

clear laserSub
clear detectNode

Subscribe Using Callback Functions

Instead of using receive to get data, you can specify a function to be called when a new message is
received. This allows other MATLAB code to execute while the subscriber is waiting for new
messages. Callbacks are essential if you want to use multiple subscribers.

Subscribe to the /pose topic, using the callback function exampleHelperROS2PoseCallback,
which takes a received message as the input. One way of sharing data between your main workspace
and the callback function is to use global variables. Define two global variables pos and orient.

controlNode = ros2node("/base_station");
poseSub = ros2subscriber(controlNode,"/pose",@exampleHelperROS2PoseCallback);
global pos
global orient

The global variables pos and orient are assigned in the exampleHelperROS2PoseCallback
function when new message data is received on the /pose topic.

function exampleHelperROS2PoseCallback(message)
 % Declare global variables to store position and orientation
 global pos
 global orient

 % Extract position and orientation from the ROS message and assign the
 % data to the global variables.
 pos = [message.linear.x message.linear.y message.linear.z];
 orient = [message.angular.x message.angular.y message.angular.z];
end

Wait a moment for the network to publish another /pose message. Display the updated values.

pause(3)
disp(pos)

 0.0416 -0.0499 -0.0038

disp(orient)

2 ROS 2 Featured Examples

2-18

 -0.0076 -0.0039 0.0270

If you type in pos and orient a few times in the command line you can see that the values are
continuously updated.

Stop the pose subscriber by clearing the subscriber variable

clear poseSub
clear controlNode

Note: There are other ways to extract information from callback functions besides using globals. For
example, you can pass a handle object as additional argument to the callback function. See the
“Callback Definition” documentation for more information about defining callback functions.

Publish Messages

Create a publisher that sends ROS 2 string messages to the /chatter topic.

chatterPub = ros2publisher(node_1,"/chatter","std_msgs/String");

Create and populate a ROS 2 message to send to the /chatter topic.

chatterMsg = ros2message(chatterPub);
chatterMsg.data = 'hello world';

Use ros2 topic list to verify that the /chatter topic is available in the ROS 2 network.

ros2 topic list

/chatter
/parameter_events
/pose
/scan

Define a subscriber for the /chatter topic. exampleHelperROS2ChatterCallback is called when
a new message is received, and displays the string content in the message.

chatterSub = ros2subscriber(node_2,"/chatter",@exampleHelperROS2ChatterCallback)

chatterSub =
 ros2subscriber with properties:

 TopicName: '/chatter'
 LatestMessage: []
 MessageType: 'std_msgs/String'
 NewMessageFcn: @exampleHelperROS2ChatterCallback
 History: 'keeplast'
 Depth: 10
 Reliability: 'reliable'
 Durability: 'volatile'

Publish a message to the /chatter topic. Observe that the string is displayed by the subscriber
callback.

send(chatterPub,chatterMsg)
pause(3)

 Exchange Data with ROS 2 Publishers and Subscribers

2-19

ans =
'hello world'

The exampleHelperROS2ChatterCallback function was called when the subscriber received the
string message.

Disconnect From ROS 2 Network

Remove the sample nodes, publishers and subscribers from the ROS 2 network. Also clear the global
variables pos and orient

clear global pos orient
clear

Next Steps

• “Work with Basic ROS 2 Messages” on page 2-11
• “ROS 2 Custom Message Support” on page 2-39

2 ROS 2 Featured Examples

2-20

Manage Quality of Service Policies in ROS 2
Quality of Service (QoS) policy options allow for changing the behavior of communication within a
ROS 2 network. QoS policies are modified for specific communication objects, such as publishers and
subscribers, and change the way that messages are handled in the object and transported between
them. For any messages to pass between two communication objects, their QoS policies must be
compatible.

The available Quality of Service policies in ROS 2 are:

• History - Message queue mode
• Depth - Message queue size
• Reliability - Delivery guarantee of messages
• Durability - Persistence of messages

For more information, see About Quality of Service Settings.

History and Depth

The history and depth QoS policies determine the behavior of communication objects when messages
are being made available faster than they can be processed. This is primarily a concern for
subscribers that are receiving messages while still processing the previous message. Messages are
placed into a processing queue, which can affect publishers as well. History has the options of:

• "keeplast" - The message processing queue has a maximum size equal to the Depth value. If
the queue is full, the oldest messages are dropped to make room for newer ones.

• "keepall" - The message processing queue attempts to keep all messages received in the queue
until processed.

Under either history setting, the queue size is subject to hardware resource limits. If the subscriber
calls a callback when new messages are received, the queue size is also limited by the maximum
recursion limit.

In situations where it is important to process all messages, increasing the Depth value or using
History,"keepall" is recommended.

This example shows how to set up a publisher and subscriber for sending and receiving point cloud
messages. The publisher Depth is 20 and the subscriber history is set to "keepall". The subscriber
uses a call back to plot the time stamp for each message to show the timing of processing each
message. The initial messages take longer to process, but all the messages are eventually processed
from the queue.

% Create a publisher to provide sensor data
robotNode = ros2node("/simple_robot");
lidarPub = ros2publisher(robotNode,"/laser_scan","sensor_msgs/PointCloud2",...
 "History","keeplast","Depth",20);

% Create a subscriber representing localization, requiring all scan data
hFig = figure;
hAxesLidar = axes("Parent",hFig);
title("Message Timeline (Keep All)")
localizationSub = ros2subscriber(robotNode,"/laser_scan",...
 @(msg)exampleHelperROS2PlotTimestamps(msg,hAxesLidar),...
 "History","keepall");

 Manage Quality of Service Policies in ROS 2

2-21

https://index.ros.org//doc/ros2/Concepts/About-Quality-of-Service-Settings/

% Send messages, simulating an extremely fast sensor
load robotPoseLidarData.mat lidarScans
for iMsg = 1:numel(lidarScans)
 send(lidarPub,lidarScans(iMsg))
end

% Allow messages to arrive, then remove the localization subscriber
pause(3)

clear localizationSub

In situations where messages being dropped is less important, and only the most up-to-date
information really matters, a smaller queue is recommended to improve performance and ensure the
most recent information is being used. This example shows quicker processing of the first messages
and still gets all the messages. Depending on your resources however, you may see messages get
dropped.

% Create a subscriber representing user interface display
hFig = figure;
hAxesLidar2 = axes("Parent",hFig);
title("Message Timeline (Keep Last 1)")
scanDisplaySub = ros2subscriber(robotNode,"/laser_scan",...
 @(msg)exampleHelperROS2PlotTimestamps(msg,hAxesLidar2),...
 "History","keeplast","Depth",1);
for iMsg = 1:numel(lidarScans)
 send(lidarPub,lidarScans(iMsg))

2 ROS 2 Featured Examples

2-22

end

% Allow messages to arrive, then remove the subscriber and publisher
pause(3)

clear lidarPub scanDisplaySub

Reliability

The reliability QoS policy determines whether to guarantee delivery of messages, and has the
options:

• "reliable" - The publisher continuously sends the message to the subscriber until the
subscriber confirms receipt of the message.

• "besteffort" - The publisher sends the message only once, and does not confirm that the
subscriber receives it.

Reliable

A "reliable" connection is useful when all of the data must be processed, and any dropped
messages may impact the result. This example publishes Odometry messages and uses a subscriber
callback to plot the position. Because for the "reliable" setting, all the positions are plotted in the
figure.

% Create a publisher for odometry data
odomPub = ros2publisher(robotNode,"/odom","nav_msgs/Odometry",...
 "Reliability","reliable");

 Manage Quality of Service Policies in ROS 2

2-23

% Create a subscriber for localization
hFig = figure;
hAxesReliable = axes("Parent",hFig);
title("Robot Position (Reliable Connection)")
xlabel("X (m)")
ylabel("Y (m)")
odomPlotSub = ros2subscriber(robotNode,"/odom",...
 @(msg)exampleHelperROS2PlotOdom(msg,hAxesReliable,"ok"),...
 "Reliability","reliable");

% Send messages, simulating an extremely fast sensor
load robotPoseLidarData.mat odomData
for iMsg = 1:numel(odomData)
 send(odomPub,odomData(iMsg))
end

pause(5) % Allow messages to arrive and be plotted

% Temporarily prevent reliable subscriber from reacting to new messages
odomPlotSub.NewMessageFcn = [];

Best Effort

A "besteffort" connection is useful to avoid impacting performance if dropped messages are
acceptable. If a publisher is set to "reliable", and a subscriber is set to "besteffort", the
publisher treats that connection as only requiring "besteffort", and does not confirm delivery.

2 ROS 2 Featured Examples

2-24

Connections with "reliable" subscribers on the same topic are guaranteed delivery from the same
publisher.

This example uses a "besteffort" subscriber, but still receives all messages due to the low impact
on the network.

hFig = figure;
hAxesBestEffort = axes("Parent",hFig);
title("Message Timeline (Best Effort Connection)")
odomTimingSub = ros2subscriber(robotNode,"/odom",...
 @(msg)exampleHelperROS2PlotTimestamps(msg,hAxesBestEffort),...
 "Reliability","besteffort");
for iMsg = 1:numel(odomData)
 send(odomPub,odomData(iMsg))
end

pause(3) % Allow messages to arrive and be plotted

Compatibility

Ensuring compatibility is an important consideration when setting reliability. A subscriber with a
"reliable" option set requires a publisher that meets that standard. Any "besteffort"
publishers do not connect to a "reliable" subscriber because messages are not guaranteed to be
delivered. In the opposite situation, a "reliable" publisher and a "besteffort" subscriber do
connect, but the connection behaves as "besteffort" with no confirmation when receiving
messages. This example shows a "besteffort" publisher sending messages to the "besteffort"

 Manage Quality of Service Policies in ROS 2

2-25

subscriber already set up. Again, due to the low impact on the network, the "besteffort"
connection is sufficient to process all the messages.

% Reactivate reliable subscriber to show no messages received
odomPlotSub.NewMessageFcn = @(msg)exampleHelperROS2PlotOdom(msg,hAxesReliable,"*r");

% Send messages from a best-effort publisher
bestEffortOdomPub = ros2publisher(robotNode,"/odom","nav_msgs/Odometry",...
 "Reliability","besteffort");
for iMsg = 1:numel(odomData)
 send(bestEffortOdomPub,odomData(iMsg))
end

% Allow messages to arrive, then remove odometry publishers and subscribers
pause(3) % Allow messages to arrive and be plotted

clear odomPub bestEffortOdomPub odomPlotSub odomTimingSub

Durability and Depth

The durability QoS policy controls the persistence of messages for late-joining connections, and has
the options:

• "transientlocal" - For a publisher, messages that have already been sent are maintained. If a
subscriber joins the network with "transientlocal" durability after that, then the publisher
sends the persisted messages to the subscriber.

2 ROS 2 Featured Examples

2-26

• "volatile" - Publishers do not persist messages after sending them, and subscribers do not
request persisted messages from publishers.

The number of messages persisted by publishers with "transientlocal" durability is also
controlled by the Depth input. Subscribers only request the number of recent messages based on
their individual Depth settings. Publishers can still store more messages for other subscribers to get
more. For example, a full list of the robot position may be useful for visualizing its path, but a
localization algorithm may only be interested in the last known location. This example illustrates that
by using a localization subscriber to display the current position and a plotting subscriber to show all
positions in the queue.

% Publish robot location information
posePub = ros2publisher(robotNode,"/bot_position","geometry_msgs/Pose2D",...
 "Durability","transientlocal","Depth",100);
load robotPoseLidarData.mat robotPositions
for iMsg = 1:numel(robotPositions)
 send(posePub,robotPositions(iMsg))
 pause(0.2) % Allow for processing time
end

% Create a localization update subscriber that only needs current position
localUpdateSub = ros2subscriber(robotNode,"/bot_position",@disp,...
 "Durability","transientlocal","Depth",1);
pause(1) % Allow message to arrive

 x: 0.1047
 y: -2.3168
 theta: -8.5194

% Create a visualization subscriber to show where the robot has been
hFig = figure;
hAxesMoreMsgs = axes("Parent",hFig);
title("Robot Position (Transient Local Connection)")
xlabel("X (m)")
ylabel("Y (m)")
hold on
posePlotSub = ros2subscriber(robotNode,"/bot_position",...
 @(msg)plot(hAxesMoreMsgs,msg.x,msg.y,"ok"),...
 "Durability","transientlocal","Depth",20);
pause(3) % Allow messages to arrive and be plotted

 Manage Quality of Service Policies in ROS 2

2-27

Compatibility

Similar to reliability, incompatible durability settings can prevent communication between publishers
and subscribers. A subscriber with "transientlocal" durability requires a publisher with
"transientlocal" durability. If a publisher is "volatile", no connection is established with
"transientlocal" subscribers. If a publisher is "transientlocal" and the subscriber
"volatile", then that connection is created, without sending persisting messages to the subscriber.

% Reset plotting behavior
posePlotSub.NewMessageFcn = @(msg)plot(hAxesMoreMsgs,msg.x,msg.y,"xr");

% Send messages from volatile publisher
volatilePosePub = ros2publisher(robotNode,"/bot_position",...
 "Durability","volatile");
for iMsg = 1:numel(robotPositions)
 send(volatilePosePub,robotPositions(iMsg))
 pause(0.2) % Allow for processing time
end

No messages are received by either "transientlocal" subscriber.

% Remove pose publishers and subscribers
clear posePub volatilePosePub localUpdateSub posePlotSub robotNode

2 ROS 2 Featured Examples

2-28

Manage Quality of Service Policies in ROS 2 Application with
TurtleBot

This example demonstrates best practices in managing Quality of Service (QoS) policies for an
application using ROS 2. QoS policies allow for the flexible tuning of communication behavior
between publishers and subscribers, and change the way that messages are transported within a ROS
2 network. For more information, see “Manage Quality of Service Policies in ROS 2” on page 2-21.

In this example, you use a MATLAB® script to launch a teleoperation controller for a simulated
TurtleBot® to follow a path in based on instructions in the environment.

Start Robot Simulator

Start a ROS 2 simulator for a TurtleBot® and configure the MATLAB connection with the robot
simulator.

This example uses a virtual machine (VM). Download the ROS 2 Dashing and Gazebo VM using the
instructions in “Get Started with Gazebo and a Simulated TurtleBot” on page 1-129.

• Start the Ubuntu® virtual machine.
• Select Gazebo ROS2 Maze on the Ubuntu desktop to start the Gazebo world built for this

example.
• Enter these commands in the MATLAB Command Window to verify that the topics from the robot

simulator are visible in MATLAB.

setenv('ROS_DOMAIN_ID','25')
ros2('topic','list')

/camera/camera_info
/camera/image_raw
/clock
/cmd_vel
/imu
/joint_states
/odom
/parameter_events
/rosout
/scan
/tf

Set Up ROS 2 Communication

Create two ROS 2 nodes: /robotDataProcessingNode and /humanOperatorNode. The /
robotDataProcessingNode receives sensor data to process and publishes messages to keep track
of the number of signs detected. The /humanOperatorNode sends velocity commands to drive the
TurtleBot around the environment and receives a confirmation whenever a sign is detected.

domainID = 25;
robotDataProcessingNode = ros2node("/robotDataProcessingNode",domainID);
humanOperatorNode = ros2node("/humanOperatorNode",domainID);

This diagram summarizes the interaction between MATLAB and the robot simulator.

 Manage Quality of Service Policies in ROS 2 Application with TurtleBot

2-29

Quality of Service Policies for Control Commands

Create publishers and subscribers to relay messages to and from the robot simulator over the ROS 2
network. A publisher and subscriber pair can have compatible, but different QoS policies unless any
QoS policies of the subscriber are more stringent than those of the publisher. For example, you must
relay the velocity commands in a reliable channel from the publisher to the subscriber. To ensure
compatibility, specify the "Reliability" and "Durability" QoS policies of the publisher as
"reliable" and "transientlocal", respectively. This configuration indicates the maximum quality
that the controller provides for sending messages reliably. If the receiver on the robot is not equipped
with good hardware to reliably process the messages, you can set a lower QoS standard for the
subscriber. Thus, specify the "Reliability" and "Durability" QoS policies of the subscriber to
"besteffort" and "volatile" respectively, which is the minimum quality that the receiver is
willing to accept. These QoS settings demonstrate the best practice for specifying "Reliability",
and "Durability" parameters. Publishers with policies of "besteffort" or "volatile" do not
connect to subscribers with policies of "reliable", or "transientlocal". Because the subscriber
is asking for a higher QoS standard than the publisher is offering, delivery of the publisher messages
is not guaranteed.

velPub = ros2publisher(humanOperatorNode,"/cmd_vel","geometry_msgs/Twist","Reliability","reliable","Durability","transientlocal","Depth",5);

2 ROS 2 Featured Examples

2-30

Quality of Service Policies for High-Frequency Sensor Data

To receive the latest reading of sensor data being published at a high rate, set the "Reliability"
QoS policy of the subscriber to "besteffort" and, the "Durability" policy to "volatile", with a
small "Depth" value. These settings enable high-speed communication by reducing the overhead
time for sending and receiving message confirmation and ensure that the subscribers process the
most recent messages. These settings can result in subscribers not receiving messages in lossy or
high-traffic networks, or not processing all messages received if the processing cannot keep up. Apply
this QoS policy to both the camera and lidar sensor.

imageSub = ros2subscriber(robotDataProcessingNode,"/camera/image_raw","sensor_msgs/Image","Reliability","besteffort","Durability","volatile","Depth",5);
laserSub = ros2subscriber(robotDataProcessingNode,"/scan","sensor_msgs/LaserScan","Reliability","besteffort","Durability","volatile","Depth",5);

Because odometry is critical in placing the lidar scans in context, dropped odometry messages result
in misleading lidar readings. To prevent dropped messages, the reliability and durability policies for
the odometry publisher in the Gazebo node are "reliable" and "transientlocal", respectively.
As this particular algorithm does not need past messages, specify QoS policies for the odometry
subscriber as "reliable" and "volatile".

odomSub = ros2subscriber(robotDataProcessingNode,"/odom","nav_msgs/Odometry","Reliability","reliable","Durability","volatile","Depth",5);

Quality of Service Policies for Robot States and Operational Modes

In this example, the information about the current stage of the robot updates at a low frequency, and
the value in the latest message received applies until the subscriber receives the next message.
Create a publisher that sends messages reliably and stores them for late-joining subscribers. If the
"Depth" value of the publisher is large enough, it is possible for subscribers to request the entire
history of the publisher when they join the network. Configure the publisher of the /signCounter
topic with "Reliability" policy set to "reliable", "Durability" policy set to
"transientlocal", and "Depth" value set to 100.

stagePub = ros2publisher(robotDataProcessingNode,"/signCounter","std_msgs/Int8","Reliability","reliable","Durability","transientlocal","Depth",100);

This table summarizes the QoS policies for the five pairs of publishers and subscribers.

 Manage Quality of Service Policies in ROS 2 Application with TurtleBot

2-31

Compatibility in Quality of Service Policies

For messages to pass successfully from publisher to subscriber over a topic, their QoS policies must
be compatible. The publishers in the table do not always have the same QoS parameters as their
corresponding subscribers, but they are still compatible. For example, in the camera sensor, velocity
command, and laser scan topics, the "reliable" publishers and "besteffort" subscribers are
able to connect. The connection behaves as a "besteffort" connection, with no confirmation when a
subscriber receives a message. Similarly, in the odometry and velocity command topics, the
"transientlocal" publishers and "volatile" subscribers have compatible QoS policies. The
publishers retain the published messages while the subscribers do not request any previously sent
messages.

Control Robot Using Teleoperation

Run the teleoperation controller to move the robot . Process the sensor data to help the robot
visualize and navigate in the environment. When the robot moves close to a sign, the sign-detecting
algorithm outputs a confirmation message with the instruction to find the next sign. This task repeats
until the robot reaches the stop sign. For information on running the robot in autonomous mode, see
“Sign Following Robot with ROS 2 in MATLAB” on page 2-80.

[laserPlotObj,imageAxesHandle,signText,axesHandle] = ExampleHelperQoSTurtleBotSetupVisualizer(velPub);
% Wait to receive sensor messages before starting the control loop
receive(laserSub,5);
receive(odomSub,5);
receive(imageSub,5);
% Set callback functions for subscribers
imageSub.NewMessageFcn = @(msg)ExampleHelperQoSTurtleBotPlotImage(msg,imageAxesHandle);

2 ROS 2 Featured Examples

2-32

laserSub.NewMessageFcn = @(msg)ExampleHelperQoSTurtleBotPlotScan(msg,laserPlotObj,odomSub);
r = rateControl(10);
LastStage = false;
while ~LastStage
 [~,blobSize,blobX] = ExampleHelperQoSTurtleBotProcessImg(imageSub.LatestMessage); % Process image
 [nextStage,LastStage,stageMsg,textHandle] = ExampleHelperQoSTurtleBotSignDetection(LastStage,signText,blobX,blobSize,stagePub,axesHandle); % Sign detection algorithm
 if nextStage && ~LastStage % When the algorithm detects a sign, publish a message to keep track of it.
 send(stagePub,stageMsg);
 end
 waitfor(r);
end

 Manage Quality of Service Policies in ROS 2 Application with TurtleBot

2-33

2 ROS 2 Featured Examples

2-34

When sensors detect the stop sign, create a new subscriber in the /humanOperatorNode node to
request the past messages in the history of the publisher. Extract information on all the detected
signs.

send(stagePub,stageMsg);
stageSub = ros2subscriber(humanOperatorNode,"/signCounter","std_msgs/Int8","Reliability","reliable","Durability","transientlocal","Depth",100);
stageSub.NewMessageFcn = @(msg)ExampleHelperQoSTurtleBotSignCountUpdate(msg,textHandle);
pause(2); % Allow time for the persisting messages to be received and processed

 Manage Quality of Service Policies in ROS 2 Application with TurtleBot

2-35

2 ROS 2 Featured Examples

2-36

% Clean up entities in ROS 2 to remove them from the network.
clear laserSub odomSub velPub imageSub stagePub stageSub robotDataProcessingNode humanOperatorNode

Observe Effects of Quality of Service Policies in Lossy Networks

In low-traffic and lossless networks, there is little difference between reliable and best-effort
communication. To visualize how different QoS policies handle lossy or high-traffic network
connections, use the traffic control utility to simulate a network with delay. On the VM, open a new
terminal and enter this command.

sudo tc qdisc add dev ens33 root netem delay 0.5ms

The traffic control utility simulates a fixed amount of delay to all packets on the ens33 network
interface. Run the example again, observing the stuttering effect of the image stream due to some
dropped frames in "best-effort" communication. If you change the image subscriber to
"reliable", the image stream smooths out, but lags behind the actual robot viewpoint slightly due
to the network delay.

To clean up, remove the artificial network lag by entering this command.

sudo tc qdisc delete dev ens33 root netem delay 0.5ms

 Manage Quality of Service Policies in ROS 2 Application with TurtleBot

2-37

2 ROS 2 Featured Examples

2-38

ROS 2 Custom Message Support
Custom messages are user-defined messages that you can use to extend the set of message types
currently supported in ROS 2. If you are sending and receiving supported message types, you do not
need to use custom messages. To see a list of supported message types, call ros2 msg list in the
MATLAB® Command Window. For more information about supported ROS 2 messages, see “Work
with Basic ROS 2 Messages” on page 2-11.

If this if your first time working with ROS 2 custom messages, check the “ROS System
Requirements”.

Custom messages Contents

ROS 2 custom messages are specified in ROS 2 package folders that contain a msg directory. The msg
folder contains all your custom message type definitions. For example, the package
example_b_msgs, within the custom folder, has the below folder and file structure.

The package contains one custom message type, Standalone.msg. MATLAB uses these files to
generate the necessary files for using the custom messages contained in the package. For more
information on message naming conventions, see ROS 2 Interface Definition.

In this example, you go through the procedure for creating ROS 2 custom messages in MATLAB®.
You must have a ROS 2 package that contains the required msg file.

After ensuring that your custom message package is correct, note the folder path location, and then,
call ros2genmsg with the specified path. The following example provided three messages
example_package_a, example_package_b, and example_package_c that have dependencies.
This example also illustrates that you can use a folder containing multiple messages and generate
them all at the same time.

To set up custom messages in MATLAB, open MATLAB in a new session. Place your custom message
folder in a location and note the folder path. In this example, the custom message interface folder is
present in the current directory. If you are creating custom message packages in a separate location,
provide the appropriate path to the folder that contains the custom message packages.

folderPath = fullfile(pwd,"custom");
copyfile("example_*_msgs",folderPath);

Specify the folder path for custom message files and call ros2genmsg to create custom messages for
MATLAB.

 ROS 2 Custom Message Support

2-39

http://design.ros2.org/articles/interface_definition.html#naming-of-messages-and-services

ros2genmsg(folderPath)

Identifying message files in folder 'U:/Documents/MATLAB/Examples/ros-ex44405863/custom'.Done.
Validating message files in folder 'U:/Documents/MATLAB/Examples/ros-ex44405863/custom'.Done.
[3/3] Generating MATLAB interfaces for custom message packages... Done.
Running colcon build in folder 'U:/Documents/MATLAB/Examples/ros-ex44405863/custom/matlab_msg_gen/win64'.
Build in progress. This may take several minutes...
Build succeeded.build log

Call ros2 msg list to verify creation of new custom messages.

You can now use the above created custom message as the standard messages. For more information
on sending and receiving messages, see “Exchange Data with ROS 2 Publishers and Subscribers” on
page 2-17.

Create a publisher to use example_package_b/Standalone message.

node = ros2node("/node_1");
pub = ros2publisher(node,"/example_topic","example_b_msgs/Standalone");

Create a subscriber on the same topic.

sub = ros2subscriber(node,"/example_topic");

Create a message and send the message.

custom_msg = ros2message("example_b_msgs/Standalone");
custom_msg.int_property = uint32(12);
custom_msg.string_property='This is ROS 2 custom message example';
send(pub,custom_msg);
pause(3) % Allow a few seconds for the message to arrive

Use LatestMessage field to know the recent message received by the subscriber.

sub.LatestMessage

ans = struct with fields:
 int_property: 12
 string_property: 'This is ROS 2 custom message example'

Remove the created ROS objects.

clear node pub sub

2 ROS 2 Featured Examples

2-40

Using ROS Bridge to Establish Communication Between ROS
and ROS 2

ROS 2 is newer version of ROS with different architecture. Both the networks are separate and there
is no direct communication between the nodes in ROS and ROS 2. The ros1_bridge package
provides a network bridge which enables the exchange of messages between ROS and ROS 2. The
bridge manages all the conversion required and sends messages across both the networks. For more
information, see ros1_bridge. This example uses a virtual machine which may be downloaded by
following the instructions in “Get Started with Gazebo and a Simulated TurtleBot” on page 1-129. The
ros1_bridge package is installed on this virtual machine.

This example shows how to control the TurtleBot3 in Gazebo using keyboard commands from the
MATLAB®. The Gazebo Simulator is available in ROS 1 networks only. You can use ros1_bridge to
exchange the Gazebo topics such as '/odom' or '/cmd_vel' to ROS 2.

The below diagram depicts the message exchange between ROS 1 and ROS 2 networks using
ros1_bridge. The '/odom' topic contains nav_msgs/Odometry messages sent from the ROS 1
network with Gazebo. The ROS 2 node subscribes to the /odom topic that has been bridged from ROS
1 and publishes a '/cmd_vel' message based on the robot pose. The bridge then takes the '/
cmd_vel' message and publishes it on the ROS 1 network.

 Using ROS Bridge to Establish Communication Between ROS and ROS 2

2-41

https://github.com/ros2/ros1_bridge
https://github.com/ros2/ros1_bridge

Prerequisites:

• Download the Virtual Machine using instructions in “Get Started with Gazebo and a Simulated
TurtleBot” on page 1-129

• “Connect to a ROS 2 Network” on page 2-6

Set Up Virtual Machine

Communicate Outside Subnet

You may need to create an XML file on the VM named DEFAULT_FASTRTPS_PROFILE.xml to
configure IP addresses to communicate under different subnets (see Communicate Outside Subnet
section in “Connect to a ROS 2 Network” on page 2-6). In the example XML file replace <address>
entries with host and VM IP addresses and replace <domainId> entry with your specified domain.
Create the same file, with the same contents, on your host computer in the MATLAB current working
directory.

Example file:

<?xml version="1.0" encoding="UTF-8"?>
<profiles>
 <participant profile_name="participant_win" is_default_profile="true">
 <rtps>
 <builtin>
 <metatrafficUnicastLocatorList>
 <locator/>
 </metatrafficUnicastLocatorList>
 <domainId>25</domainId>
 <initialPeersList>
 <locator>
 <udpv4>
 <address>192.168.2.147</address>
 </udpv4>
 </locator>
 <locator>
 <udpv4>
 <address>192.168.2.1</address>
 </udpv4>
 </locator>
 </initialPeersList>
 </builtin>
 </rtps>
 </participant>
</profiles>

Launch Gazebo

On the VM desktop, click Gazebo Empty. This Gazebo world contains a Turtlebot robot, which
publishes and subscribes to messages on a ROS 1 network.

Start the Bridge

Click the ROS Bridge shortcut. This bridge setups publishers and subscribers for all the ROS 1
topics on a ROS 2 network.

2 ROS 2 Featured Examples

2-42

In the Terminal window, notice that the bridge is up and running.

 Using ROS Bridge to Establish Communication Between ROS and ROS 2

2-43

Open one more terminal and enter the following commands

export ROS_DOMAIN_ID=25
source /opt/ros/dashing/setup.bash

Now check that Gazebo topics are present in ROS 2.

ros2 topic list

Echo the /odom topic to see messages being published.

ros2 topic echo /odom

Control the TurtleBot3 from ROS 2

In MATLAB on your host machine, set the proper domain ID for the ROS 2 network using the
'ROS_DOMAIN_ID' environment variable. The ID must be a character vector.

2 ROS 2 Featured Examples

2-44

setenv("ROS_DOMAIN_ID","25");

Create a ROS 2 node. Subscribe to the odometry topic that is bridged from ROS 1.

ros2Node = ros2node("/example_node");
handles.odomSub = ros2subscriber(ros2Node,"/odom","nav_msgs/Odometry")

handles = struct with fields:
 odomSub: [1×1 ros2subscriber]

Receive the odometry messages from the bridge and use the exampleHelperGet2DPose function to
unpack the message into a 2D pose. Get the start position of the robot.

odomMsg = receive(handles.odomSub);
poseStart = exampleHelperGet2DPose(odomMsg)

poseStart = 1×3

 0.2038 0.0140 -0.8517

handles.poses = poseStart;

Create a publisher for controlling the robot velocity. The bridge takes these messages and sends them
on the ROS 1 network.

handles.velPub = ros2publisher(ros2Node,'/cmd_vel','geometry_msgs/Twist')

handles = struct with fields:
 odomSub: [1×1 ros2subscriber]
 poses: [0.2038 0.0140 -0.8517]
 velPub: [1×1 ros2publisher]

Run the exampleHelperROS2TurtleBotKeyboardControl function, which allows you to control
the TurtleBot3 with the keyboard. The handles input contains the ROS 2 subscriber, ROS 2
publisher, and poses as a structure. The function sends control commands on the ROS 2 network
based on the keyboard inputs. The bridge transfers those messages to the ROS 1 network for the
Gazebo simulator.

poses = exampleHelperROS2TurtleBotKeyboardControl(handles);

The figure that opens listens to keyboard inputs for controlling the robot in Gazebo. Hit the keys and
watch the robot move. Press Q to exit.

 Using ROS Bridge to Establish Communication Between ROS and ROS 2

2-45

Plot Data Received from ROS

Plot the results to show how TurtleBot3 moved in Gazebo. The poses variable has stored all the
updated /odom messages that were received from the ROS 1 network.

2 ROS 2 Featured Examples

2-46

odomMsg = receive(handles.odomSub);
poseEnd = exampleHelperGet2DPose(odomMsg)

poseEnd = 1×3

 0.8522 0.1618 -1.6255

poses = [poses;poseEnd];
figure
plot(poses(:,1),poses(:,2),'b-', ...
 poseStart(1),poseStart(2),'go', ...
 poseEnd(1),poseEnd(2),'ro');
xlabel('X [m]');
ylabel('Y [m]');
legend('Trajectory','Start','End');

Clear the publishers and subscribers on the host.

clear

 Using ROS Bridge to Establish Communication Between ROS and ROS 2

2-47

Get Started with ROS 2 in Simulink®
This example shows how to use Simulink blocks for ROS 2 to send and receive messages from a local
ROS 2 network.

Introduction

Simulink support for Robot Operating System 2 (ROS 2) enables you to create Simulink models that
work with a ROS 2 network. ROS 2 is a communication layer that allows different components of a
robot system to exchange information in the form of messages. A component sends a message by
publishing it to a particular topic, such as /odometry. Other components receive the message by
subscribing to that topic.

Simulink support for ROS 2 includes a library of Simulink blocks for sending and receiving messages
for a designated topic. When you simulate the model, Simulink connects to a ROS 2 network, which
can be running on the same machine as Simulink or on a remote system. Once this connection is
established, Simulink exchanges messages with the ROS 2 network until the simulation is terminated.
If Simulink Coder™ is installed, you can also generate C++ code for a standalone ROS 2 node, from
the Simulink model.

This example shows how to:

• Create and run a Simulink model to send and receive ROS 2 messages
• Work with data in ROS 2 messages

Prerequisites: Create a Simple Model, “Get Started with ROS 2” on page 2-2

Model

You will use Simulink to publish the X and Y location of a robot. You will also subscribe to the same
location topic and display the received X,Y location.

Enter the following command to open the completed model created in example.

open_system('ros2GetStartedExample');

Create a Publisher

Configure a block to send a geometry_msgs/Point message to a topic named /location (the "/"
is standard ROS syntax).

• From the MATLAB Toolstrip, select Home > New > Simulink Model to open a new Simulink
model.

• From the Simulink Toolstrip, select Simulation > Library Browser to open the Simulink Library
Browser. Click on the ROS Toolbox tab (you can also type roslib in MATLAB command window).
Select the ROS 2 Library.

• Drag a Publish block to the model. Double-click on the block to configure the topic and message
type.

• Select Specify your own for the Topic source, and enter /location in Topic.
• Click Select next to Message type. A pop-up window will appear. Select geometry_msgs/Point

and click OK to close the pop-up window.

2 ROS 2 Featured Examples

2-48

https://www.mathworks.com/help/simulink/gs/create-a-simple-model.html
matlab:ros2GetStartedExample

 Get Started with ROS 2 in Simulink®

2-49

Create a ROS 2 Message

Create a blank ROS 2 message and populate it with the x and y location for the robot path. Then
publish the updated ROS 2 message to the ROS 2 network.

A ROS 2 message is represented as a bus signal in Simulink. A bus signal is a bundle of Simulink
signals, and can also include other bus signals (see the “Explore Simulink Bus Capabilities”
(Simulink) example for an overview). The ROS 2 Blank Message block outputs a Simulink bus signal
corresponding to a ROS 2 message.

• Click ROS Toolbox tab in the Library Browser, or type roslib at the MATLAB command line.
Select the ROS 2 Library.

• Drag a Blank Message block to the model. Double-click on the block to open the block mask.
• Click on Select next to the Message type box, and select geometry_msgs/Point from the

resulting pop-up window. set Sample time to 0.01. Click OK to close the block mask.
• From the Simulink > Signal Routing tab in the Library Browser, drag a Bus Assignment block.
• Connect the output port of the Blank Message block to the Bus input port of the Bus

Assignment block. Connect the output port of the Bus Assignment block to the input port of
Publish block.

• Double-click on the Bus Assignment block. You should see x, y and z (the signals comprising a
geometry_msgs/Point message) listed on the left. Select ??? signal1 in the right listbox and
click Remove. Select both X and Y signals in the left listbox and click Select. Click OK to apply
changes.

2 ROS 2 Featured Examples

2-50

NOTE: If you do not see x, y and z listed, close the block mask for the Bus Assignment block, and
under the Modeling tab, click Update Model to ensure that the bus information is correctly
propagated. If you see the error, "Selected signal 'signal1' in the Bus Assignment block cannot be
found", it indicates that the bus information has not been propagated. Close the Diagnostic Viewer,
and repeat the above step.

You can now populate the bus signal with the robot location.

• From the Simulink > Sources tab in the Library Browser, drag two Sine Wave blocks into the
model.

• Connect the output ports of each Sine Wave block to the assignment input ports x and y of the
Bus Assignment block.

• Double-click on the Sine Wave block that is connected to input port X. Set the Phase parameter
to -pi/2 and click OK. Leave the Sine Wave block connected to input port Y as default.

Your publisher should look like this:

At this point, the model is set up to publish messages to the ROS 2 network. You can verify this as
follows:

• Under the Simulation tab, set the simulation stop time to inf.
• Click Run to start simulation. Simulink creates a dedicated ROS 2 node for the model and a ROS 2

publisher corresponding to the Publish block.
• While the simulation is running, type ros2 node list in the MATLAB command window. This

lists all the nodes available in the ROS network, and includes a node with a name like /
untitled_90580 (the name of the model along with a random number to make it unique).

• While the simulation is running, type ros2 topic list in the MATLAB command window. This
lists all the topics available in the ROS 2 network, and it includes /location.

 Get Started with ROS 2 in Simulink®

2-51

• Click Stop to stop the simulation. Simulink deletes the ROS 2 node and publisher. In general, the
ROS 2 node for a model and any associated publishers and subscribers are automatically deleted
at the end of a simulation; no additional clean-up steps are required.

Create a Subscriber

Use Simulink to receive messages sent to the /location topic. You will extract the x and y location
from the message and plot it in the xy-plane.

• From the ROS Toolbox tab in the Library Browser, drag a Subscribe block to the model. Double-
click on the block.

• Select Specify your own in the Topic source box, and enter /location in the Topic box.
• Click Select next to the Message type box, and select geometry_msgs/Point from the pop-up

window. set Sample time to 0.01. Click OK to close the block mask.

The Subscribe block outputs a Simulink bus signal, so you need to extract the x and y signals from it.

• From the Simulink > Signal Routing tab in the Library Browser, drag a Bus Selector block to
the model.

• Connect the Msg output of the Subscribe block to the input port of the Bus Selector block.
• From the Modeling tab, select Update Model to ensure that the bus information is propagated.

You may get an error, "Selected signal 'signal1' in the Bus Selector block 'untitled/Bus Selector'
cannot be found in the input bus signal". This error is expected, and will be resolved by the next
step.

• Double-click on the Bus Selector block. Select ??? signal1 and ??? signal2 in the right
listbox and click Remove. Select both x and y signals in the left listbox and click Select. Click OK.

The Subscribe block will output the most-recently received message for the topic on every time step.
The IsNew output indicates whether the message has been received during the prior time step. For
the current task, the IsNew output is not needed, so do the following:

• From the Simulink > Sinks tab in the Library Browser, drag a Terminator block to the model.
• Connect the IsNew output of the Subscribe block to the input of the Terminator block.

The remaining steps configure the display of the extracted X and Y signals.

• From the Simulink > Sinks tab in the Library Browser, drag an XY Graph block to the model.
Connect the output ports of the Bus Selector block to the input ports of the XY Graph block.

• From the Simulink > Sinks tab in the Library Browser, drag two Display blocks to the model.
Connect each output of the Bus Selector block to each Display block.

2 ROS 2 Featured Examples

2-52

• Save your model.

Your entire model should look like this:

Configure and Run the Model

• From the Modeling tab, select Model Settings. In the Solver pane, set Type to Fixed-step and
Fixed-step size to 0.01.

• Set simulation stop time to 10.0.
• Click Run to start simulation. An XY plot will appear.

 Get Started with ROS 2 in Simulink®

2-53

The first time you run the model in Simulink, the XY plot may look more jittery than the one above
due to delays caused by loading ROS libraries. Once you rerun the simulation a few times, the plot
should look smoother.

Note that the simulation does not work in actual or "real" time. The blocks in the model are
evaluated in a loop that only simulates the progression of time, and is not intended to track actual
clock time (for details, see “Simulation Loop Phase” (Simulink)).

Modify the Model to React Only to New Messages

In the above model, the Subscribe block outputs a message (bus signal) on every time step; if no
messages have been received at all, it outputs a blank message (i.e., a message with zero values).
Consequently, the XY coordinates are initially plotted at (0,0).

In this task, you will modify the model to use an Enabled Subsystem, so that it plots the location
only when a new message is received (for more information, see “Using Enabled Subsystems”
(Simulink)). A pre-configured model is included for your convenience.

• In the model, click and drag to select the Bus Selector block and XY Graph blocks. Right-click
on the selection and select Create Subsystem from Selection.

• From the Simulink > Ports & Subsystems tab in the Library Browser, drag an Enable block
into the newly-created subsystem.

• Connect the IsNew output of the Subscribe block to the enabled input of the subsystem as shown
in the picture below. Delete the Terminator block. Note that the IsNew output is true only if a
new message was received during the previous time step.

2 ROS 2 Featured Examples

2-54

matlab:ros2GetStartedExample

• Save your model.
• Click Run to start simulation. You should see the following XY plot.

The blocks in the enabled subsystem are only executed when a new ROS 2 message is received by the
Subscribe block. Hence, the initial (0,0) value will not be displayed in the XY plot.

 Get Started with ROS 2 in Simulink®

2-55

Connect to a ROS-Enabled Robot from Simulink® over ROS 2
This example shows you how to configure a Simulink model to send and receive information from a
separate ROS-based simulator such as Gazebo® over ROS 2.

Introduction

You can use Simulink to connect to a ROS-enabled physical robot or to a ROS-enabled robot simulator
such as Gazebo. This example shows how to:

• Configure Simulink to connect to a separate robot simulator using ROS 2
• Send velocity commands to a simulated robot
• Receive position information from a simulated robot

Here is the model you will be creating in this example.

open_system('robotROS2ConnectToRobotExample');

Prerequisites: “Get Started with ROS 2” on page 2-2 , “Exchange Data with ROS 2 Publishers and
Subscribers” on page 2-17, “Get Started with ROS 2 in Simulink®” on page 2-48

Task 1 - Start a Gazebo Robot Simulator

In this task, you will start a ROS-based simulator for a differential-drive robot along with a ROS
bridge that replays ROS messages over ROS 2 network.

1 Start the Ubuntu® virtual machine desktop from Virtual Machine with ROS 2 Melodic and
Gazebo.

2 In the Ubuntu desktop, click the "Gazebo Empty" icon to start the Gazebo world.
3 Click on the "ROS Bridge" icon, to relay messages between ROS and ROS 2 network.

The simulator receives and sends messages on the following topics:

• Receives geometry_msgs/Twist velocity command messages on the /cmd_vel topic.
• Sends nav_msgs/Odometry messages to the /odom topic.

Task 2 - Configure Simulink to Connect to the ROS 2 Network

• From the Simulation tab Prepare gallery, click ROS Network under ROS TOOLBOX.
• In the Configure ROS Network Addresses dialog, under Domain ID (ROS 2), set ID to 25.

This ID value matches the domain ID of the ROS 2 network on the Ubuntu virtual machine, where
the messages from Gazebo in ROS network are received.

Task 3 - Send Velocity Commands To the Robot

Create a publisher that sends control commands (linear and angular velocities) to the simulator.
Make these velocities adjustable by using Slider Gain blocks.

ROS uses a right-handed coordinate system, so X-axis is forward, Y-axis is left and Z-axis is up.
Control commands are sent using a geometry_msgs/Twist message, where linear.x indicates
linear forward velocity (in meters/sec), and angular.z indicates angular velocity around the Z-axis
(in radians/sec).

2 ROS 2 Featured Examples

2-56

http://gazebosim.org/
matlab:robotROS2ConnectToRobotExample
https://www.mathworks.com/ros2_vm_install/v2
https://www.mathworks.com/ros2_vm_install/v2

• Open a new Simulink model.
• On the Apps tab, under CONTROL SYSTEMS, click Robot Operating System.
• In the ROBOT OPERATING SYSTEM (ROS) dialog, click Select a ROS Network and select

Robot Operating System 2 (ROS 2).
• From the ROS Toolbox > ROS 2 tab in the Library Browser, drag a Publish block to the model.

Double-click the block.
• Set Topic source to Specify your own. Enter /cmd_vel in the Topic field. Click Select next to

Message Type, select geometry_msgs/Twist from drop down list, and click OK.
• From the ROS Toolbox > ROS 2 tab in the Library Browser, drop a Blank Message block to the

model. Double-click the block.
• Click Select next to Message type and select geometry_msgs/Twist.
• Set Sample time to 0.01 and click OK.
• From the Simulink > Signal Routing tab in the Library Browser, drag a Bus Assignment block

to the model.
• Connect the output of the Blank Message block to the Bus input of the Bus Assignment block,

and the Bus output to the input of the Publish block.
• From the Modeling tab, click Update Model to ensure that the bus information is correctly

propagated. Ignore the error, "Selected signal 'signal1' in the Bus Assignment block 'untitled/Bus
Assignment' cannot be found in the input bus signal", if it appears. The next step will resolve this
error.

• Double-click the Bus Assignment block. Select ??? signal1 in the right listbox and click
Remove. In the left listbox, expand both linear and angular properties. Select linear > x and
angular > z and click Select. Click OK to close the block mask.

 Connect to a ROS-Enabled Robot from Simulink® over ROS 2

2-57

• Add a Constant block, a Gain block, and two Slider Gain blocks. Connect them together as
shown in picture below, and set the Gain value to -1.

• Set the limits, and current parameters of the linear velocity slider to 0.0 to 2.0, and 1.0
respectively. Set the corresponding parameters of the steering gain slider to -1.0 to 1.0, and
0.1.

2 ROS 2 Featured Examples

2-58

Task 4 - Receive Location Information From the Robot

Create a subscriber to receive messages sent to the /odom topic. You will also extract the location of
the robot and plot it's path in the XY-plane.

• From the ROS Toolbox > ROS 2 tab in the Library Browser, drag a Subscribe block to the
model. Double-click the block.

• Set Topic source to Select From ROS network, and click Select next to the Topic box. Select "/
odom" for the topic and click OK. Note that the message type nav_msgs/Odometry is set
automatically.

• From the Simulink > Signal Routing tab in the Library Browser, drag a Bus Selector block to
the model.

• Connect the Msg output port of the Subscribe block to the input port of the Bus Selector block.
In the Modeling tab, click Update Model to ensure that the bus information is correctly
propagated.

• Double-click the Bus Selector block. Select ??? signal1 and ??? signal2 in the right listbox
and click Remove. In the left listbox, expand pose > pose > position and select x and y. Click
Select and then OK.

• From the Simulink > Sinks tab in the Library Browser, drag an XY Graph block to the model.
Connect the X and Y output ports of the Bus Selector block to the input ports of the XY Graph
block.

 Connect to a ROS-Enabled Robot from Simulink® over ROS 2

2-59

The following figure shows the completed model. A pre-configured model is included for your
convenience.

Task 5 - Configure and Run the Model

• From the Modeling tab, click Model Settings. In the Solver pane, set Type to Fixed-step and
Fixed-step size to 0.01.

• Set simulation Stop time to inf.
• Click Run to start the simulation.
• In both the simulator and XY plot, you should see the robot moving in a circle.
• While the simulation is running, change the values of Slider Gain blocks to control the robot.

Double-click the XY Graph block and change the X and Y axis limits if needed (you can do this
while the simulation is running).

• To stop the simulation, click Stop.

2 ROS 2 Featured Examples

2-60

matlab:robotROS2ConnectToRobotExample

Feedback Control of a ROS-Enabled Robot Over ROS 2
This example shows you how to use Simulink® to control a simulated robot running in a Gazebo®
robot simulator over ROS 2 network.

Introduction

In this example, you will run a model that implements a simple closed-loop proportional controller.
The controller receives location information from a simulated robot and sends velocity commands to
drive the robot to a specified location. You will adjust some parameters while the model is running
and observe the effect on the simulated robot.

The following diagram summarizes the interaction between Simulink and the robot simulator (the
arrows in the diagram indicate ROS 2 message transmission). The /odom topic conveys location
information, and the /cmd_vel topic conveys velocity commands.

Task 1 - Start a Robot Simulator and Configure Simulink

In this task, you will start a ROS-based simulator for a differential-drive robot, start the ROS bridge
configure MATLAB® connection with the robot simulator.

1 Download a virtual machine using instructions in “Get Started with Gazebo and a Simulated
TurtleBot” on page 1-129.

2 In the Ubuntu desktop, click the Gazebo Empty icon to start the empty Gazebo world.
3 Click the ROS Bridge (Dashing) icon to start the ROS bridge to relay messages between

Simulink ROS 2 node and Turtlebot3 ROS-enabled robot.
4 In MATLAB Command Window, set the ROS_DOMAIN_ID environment variable to 25 to match

the robot simulator ROS bridge settings and run ros2 topic list to verify that the topics
from the robot simulator are visible in MATLAB.

setenv('ROS_DOMAIN_ID','25')
ros2('topic','list')

 Feedback Control of a ROS-Enabled Robot Over ROS 2

2-61

/clock
/cmd_vel
/gazebo/link_states
/gazebo/model_states
/imu
/joint_states
/odom
/parameter_events
/rosout
/rosout_agg
/scan
/tf

Task 2 - Open Existing Model

After connecting to the ROS 2 network, open the example model.

open_system('robotROS2FeedbackControlExample.slx');

The model implements a proportional controller for a differential-drive mobile robot. On each time
step, the algorithm orients the robot toward the desired location and drives it forward. Once the
desired location is reached, the algorithm stops the robot.

open_system('robotROS2FeedbackControlExample/Proportional Controller');

Note that there are four tunable parameters in the model (indicated by colored blocks).

• Desired Position (at top level of model): The desired location in (X,Y) coordinates
• Distance Threshold: The robot is stopped if it is closer than this distance from the desired location
• Linear Velocity: The forward linear velocity of the robot
• Gain: The proportional gain when correcting the robot orientation

The model also has a Simulation Rate Control block (at top level of model). This block ensures that
the simulation update intervals follow wall-clock elapsed time.

Task 3 - Configure Simulink and Run the Model

In this task, you will configure Simulink to communicate with ROS-enabled robot simulator over ROS
2, run the model and observe the behavior of the robot in the robot simulator.

To configure the network settings for ROS 2.

• Under the Simulation tab, in PREPARE, select ROS Toolbox > ROS Network.
• In Configure ROS Network Addresses, set the ROS 2 Domain ID value to 25.
• Click OK to apply changes and close the dialog.

To run the model.

• Position windows on your screen so that you can observe both the Simulink model and the robot
simulator.

• Click the Play button in Simulink to start simulation.
• While the simulation is running, double-click on the Desired Position block and change the

Constant value to [2 3]. Observe that the robot changes its heading.

2 ROS 2 Featured Examples

2-62

matlab:robotROS2FeedbackControlExample

• While the simulation is running, open the Proportional Controller subsystem and double-click
on the Linear Velocity (slider) block. Move the slider to 2. Observe the increase in robot
velocity.

• Click the Stop button in Simulink to stop the simulation.

Task 4 - Observe Rate of Incoming Messages

In this task, you will observe the timing and rate of incoming messages.

• Click the Play button in Simulink to start simulation.
• Open the Scope block. Observe that the IsNew output of the Subscribe block is always zero,

indicating that no messages are being received for the /odom topic. The horizontal axis of the plot
indicates simulation time.

• Start Gazebo Simulator in ROS network and start ROS Bridge in ROS 2, so that ROS 2 network
able receive messages published by Gazebo Simulator.

• In the Scope display, observe that the IsNew output has the value 1 at an approximate rate of 20
times per second, in elapsed wall-clock time.

The synchronization with wall-clock time is due to the Simulation Rate Control block. Typically, a
Simulink simulation executes in a free-running loop whose speed depends on complexity of the model
and computer speed (see Simulation Loop Phase (Simulink)). The Simulation Rate Control block
attempts to regulate Simulink execution so that each update takes 0.02 seconds in wall-clock time
when possible (this is equal to the fundamental sample time of the model). See the comments inside
the block for more information.

In addition, the Enabled subsystems for the Proportional Controller and the Command Velocity
Publisher ensure that the model only reacts to genuinely new messages. If enabled subsystems were
not used, the model would repeatedly process the same (most-recently received) message over and
over, leading to wasteful processing and redundant publishing of command messages.

 Feedback Control of a ROS-Enabled Robot Over ROS 2

2-63

https://www.mathworks.com/help/simulink/ug/simulating-dynamic-systems.html#f7-8261

Summary

This example showed you how to use Simulink for simple closed-loop control of a simulated robot. It
also showed how to use Enabled subsystems to reduce overhead in the ROS 2 network.

2 ROS 2 Featured Examples

2-64

Publish and Subscribe to ROS 2 Messages in Simulink
This model shows how to publish and subscribe to a ROS 2 topic using Simulink®.

Prerequisites: “Get Started with ROS 2 in Simulink®” on page 2-48

open_system('simulinkPubSubROS2Example');

Use the Blank Message and Bus Assignment blocks to specify the x and y values of a
'geometry_msgs/Point' message type. Open the Blank Message block mask to specify the
message type. set Sample time to 0.01. Open the Bus Assignment block mask to select the signals you
want to assign. Remove any values with '???' from the right column. Supply the Bus Assignment
block with relevant values for x and y.

Feed the Bus output to the Publish block. Open the block mask and choose Specify your own as
the topic source. Specify the topic, '/location', and message type, 'geoemetry_msgs/Point'.
Set Sample time to 0.01.

Add a Subscribe block and specify the topic and message type. Feed the output Msg to a Bus Selector
and specify the selected signals in the block mask. Display the x and y values.

Set the simulation stop time to Inf and run the model. You should see the xPosition_Out and
yPosition_Out displays show the corresponding values published to the ROS 2 network.

 Publish and Subscribe to ROS 2 Messages in Simulink

2-65

2 ROS 2 Featured Examples

2-66

Generate a Standalone ROS 2 Node from Simulink®
This example shows you how to generate and build a standalone ROS 2 node from a Simulink®
model. You configure a model to generate C++ code for a standalone ROS 2 node. Then, build and
run the ROS 2 node on your host computer.

Prerequisites

• This example requires Simulink Coder™ and Embedded Coder™.
• Download a virtual machine using instructions in “Get Started with Gazebo and a Simulated

TurtleBot” on page 1-129.
• Review the “Feedback Control of a ROS-Enabled Robot Over ROS 2” on page 2-61 example.
• See ROS 2 Model Build Failure in “ROS Simulink Support and Limitations” on page 4-2.
• To ensure you have the proper third-party software, see “ROS System Requirements”.

Configure a Model for Code Generation

Configure a model to generate C++ code for a standalone ROS 2 node. The model is the proportional
controller introduced in the “Feedback Control of a ROS-Enabled Robot Over ROS 2” on page 2-61
example.

• Open the robot feedback control model configured for ROS 2. Alternatively, call
open_system("robotControllerROS2").

• Under ROS tab, in Prepare, click Hardware settings. In the Hardware implementation pane,
Hardware board settings section contains settings specific to the generated ROS 2 package,
such as information to be included in the package.xml file. Change Maintainer name to ROS 2
Example User.

• The model requires variable-sized arrays. To enable this option, check variable-size signals
under Code Generation > Interface > Software environment.

• In the Solver pane, ensure that Solver Type is set to Fixed-step, and set Fixed-step size to
0.05. In generated code, the Fixed-step size defines the actual time step, in seconds, that is used
for the model update loop (see “Execution of Code Generated from a Model” (Simulink Coder)). It
can be made smaller (e.g., 0.001 or 0.0001) but for current purposes 0.05 is sufficient.

• Click OK.

Generate the C++ ROS 2 Node

In this task, you generate code for a standalone ROS 2 node, and automatically build, and run it on
the host computer.

• In MATLAB®, change the current folder to a location where you have write permission.
• Under the Simulation tab, in Prepare, select ROS Toolbox > ROS Network.
• Set the Domain ID (ROS 2) of ROS 2 network. This example uses Domain ID as 25.
• In ROS tab, from the Deploy section dropdown, click Build & Run. If you get any errors about

bus type mismatch, close the model, clear all variables from the base MATLAB workspace, and re-
open the model. Click on the View Diagnostics link at the bottom of the model toolbar to see the
output of the build process.

Once the code generation completes, the ROS 2 node builds in the present working folder starts to
run automatically. When running in Windows®, a Command window opens. Do not close the window,
but use Ctrl+C to shutdown the ROS 2 node.

 Generate a Standalone ROS 2 Node from Simulink®

2-67

Use ros2 node to list all running nodes is the ROS 2 network. robotControllerROS2 should be in
the displayed list of nodes.

ros2('node','list')

/robotControllerROS2
/ros_bridge

Verify that the deployed node publishes data on the ROS 2 topic, /cmd_vel, to control the motion of
simulated robot.

ros2('topic','list')

/clock
/cmd_vel
/gazebo/link_states
/gazebo/model_states
/imu
/joint_states
/odom
/parameter_events
/rosout
/rosout_agg
/scan
/tf

2 ROS 2 Featured Examples

2-68

Generate Code to Manually Deploy a ROS 2 Node from
Simulink®

This example shows you how to generate C++ code from a Simulink® model to deploy as a
standalone ROS 2 node. The code is generated on your computer and must be manually transferred
to the target ROS device. No connection to the hardware is necessary for generated the code. For an
automated deployment of a ROS 2 node, see “Generate a Standalone ROS 2 Node from Simulink®”
on page 2-67.

Prerequisites

• This example requires Simulink Coder™ and Embedded Coder™ .
• If this is your first time deploying a ROS node, check the “ROS System Requirements”.
• A Ubuntu Linux system with ROS is necessary for building and running the generated C++ code.

You can use your own Ubuntu ROS system, or you can use the Linux virtual machine used for ROS
Toolbox™ examples. See “Get Started with Gazebo and a Simulated TurtleBot” on page 1-129 for
instructions on setting up a simulated robot.

• Review the “Feedback Control of a ROS-Enabled Robot Over ROS 2” on page 2-61 example, which
details the Simulink model that the code is being generated from.

Configure A Model for Code Generation

Configure a model to generate C++ code for a standalone ROS 2 node. The model is the proportional
controller introduced in the “Feedback Control of a ROS-Enabled Robot Over ROS 2” on page 2-61
example.

• Open the robot feedback control model configured for ROS 2.

open_system("robotFeedbackControllerROS2");

• Under ROS tab, click Hardware settings. In the Hardware implementation pane, Hardware
board settings section contains settings specific to the generated ROS 2 package, such as
information to be included in the package.xml file. Change Maintainer name to ROS 2
Example User, click Apply.

• The model requires variable-sized arrays. To enable this option, check variable-size signals
under Code Generation > Interface > Software environment.

• In the Solver pane, ensure that the solver Type is set to Fixed-step, and set Fixed-step size to
0.05. In generated code, the Fixed-step size defines the actual time step, in seconds, that is used
for the model update loop (see “Execution of Code Generated from a Model” (Simulink Coder)
(Simulink Coder)). It can be made smaller (e.g., 0.001 or 0.0001) but for current purposes 0.05 is
sufficient.

• Click OK.

Configure the Build Options for Code Generation

After configuring the model, you must specify the build options for the target hardware and set the
folder or building the generated code.

Open the Configuration Parameters dialog. Under the Modeling tab, click Model Settings.

 Generate Code to Manually Deploy a ROS 2 Node from Simulink®

2-69

In the Hardware Implementation tab, under Target hardware resources, click the Build options
group. Set the Build action to Build. This setting ensures that code generated for the ROS 2 node
without building it on an external ROS 2 device.

Generate and Deploy the Code

In this task, you generate source code for ROS 2 node, manually deploy to Ubuntu Linux system, and
build it on the Linux system.

• In MATLAB®, change the current folder to a location where you have write permission.
• Under the Simulation tab, in Prepare, select ROS Toolbox > ROS Network.
• Set the Domain ID (ROS 2) of ROS 2 network. This example uses Domain ID as 25.
• In ROS tab, from the Deploy section, click Build Model. If you get any errors about bus type

mismatch, close the model, clear all variables from the base MATLAB workspace, and re-open the
model. Click on the View Diagnostics link at the bottom of the model toolbar to see the output of
the build process.

Once the build completes, a src folder which contains the package source code will be written to
your folder.

Compress the src folder to a tar file by executing the following command in MATLAB Command
Window:

>> tar('src.tar','src');

After generating the tar file, manually transfer it to the target machine. This example assumes you
are using the virtual machine from “Get Started with Gazebo and a Simulated TurtleBot” on page 1-
129. The virtual machine is configured to accept SSH and SCP connections. If you are using your own
Linux system, consult your system administrator for a secure way to transfer files.

Ensure your host system (the system with your src.tar file) has an SCP client. For Windows®
systems, the next step assumes that PuTTY SCP client (pcsp.exe) is installed.

Use SCP to transfer the files to the user home director on the Linux virtual machine. Username is
user and password is password. Replace <virtual_machine_ip> with your virtual machines IP
address.

• Windows host systems:

2 ROS 2 Featured Examples

2-70

pscp.exe src.tar user@<virtual_machine_ip>:

• Linux or macOS host systems:

scp src.tar user@<virtual_machine_ip>:

Build and Run the ROS 2 Node

On the Linux system, execute the following commands to create a Catkin workspace and decompress
the source code. You may use an existing Catkin workspace.

mkdir ~/ros2_ws_simulink
tar -C ~/ros2_ws_simulink/ -xvf ~/src.tar

Build the ROS 2 node using the following command in Linux. Replace <path_to_catkin_ws> with
the path to your catkin workspace. In this example, the <path_to_catkin_ws> would be ~/
ros2_ws_simulink. (Note: There might be some warnings such as unused parameters during the
build process. These parameters are needed only for Simulink environment, it would not affect the
build process.)

cd <path_to_catkin_ws>
source /opt/ros/dashing/local_setup.sh
colcon build

Verify that the node executable was created using:

file ~/ros2_ws_simulink/install/robotfeedbackcontrollerros2/lib/robotfeedbackcontrollerros2/robotFeedbackControllerROS2

If the executable was created successfully, the command lists information about the file. The model is
now ready to be run as a standalone ROS 2 node on your device.

(Optional) You can then run the node using these commands. Replace <path_to_catkin_ws> with
the path to your catkin workspace.

Double click Gazebo Empty and ROS Bridge on virtual machine desktop to set up the Gazebo
environment. Setup environment variables and run the ROS 2 node using:

export ROS_DOMAIN_ID=25
source /opt/ros/dashing/local_setup.sh
~/<path_to_catkin_ws>/install/robotfeedbackcontrollerros2/lib/robotfeedbackcontrollerros2/robotFeedbackControllerROS2

Note: It is possible that the robot spins at an unexpected location, this is because the pose and world
is offset in Gazebo. Restart virtual machine and rerun Gazebo and the node.

You can also use ros2 node to list all running nodes in the ROS 2 network.
robotFeedbackControllerROS2 should be in the displayed list of nodes.

ros2('node','list')

Verify that this ROS 2 node publishes data on the ROS 2 topic, /cmd_vel, to control the motion of
simulated robot.

ros2('topic','list')

If you cannot see the expected node and topic, try to set ROS_DOMAIN_ID using the setenv
command in MATLAB Command Window.

 Generate Code to Manually Deploy a ROS 2 Node from Simulink®

2-71

setenv("ROS_DOMAIN_ID","25")

2 ROS 2 Featured Examples

2-72

Sign Following Robot with ROS in MATLAB
This example shows you how to use MATLAB® to control a simulated robot running on a separate
ROS-based simulator over a ROS network. The example shown here uses ROS and MATLAB. For the
other examples with ROS 2 or Simulink®, see:

• “Sign Following Robot with ROS in Simulink” on page 2-78
• “Sign Following Robot with ROS 2 in MATLAB” on page 2-80
• “Sign Following Robot with ROS 2 in Simulink” on page 2-85

In this example, you run MATLAB script that implements a sign-following algorithm and controls the
simulated robot to follow a path based on signs in the environment. The algorithm receives the
location information and camera information from the simulated robot, which is running in a separate
ROS-based simulator. The algorithm detects the color of the sign and sends the velocity commands to
turn the robot based on the color. In this example, the algorithm is designed to turn left when robot
encounters a blue sign and turn right when robot encounters a green sign. Finally the robot stops
when it encounters a red sign.

Connect to a Robot Simulator

Start a ROS-based simulator for a differential-drive robot and configure MATLAB® connection with
the robot simulator.

To follow along with this example, download a virtual machine using instructions in “Get Started with
Gazebo and a Simulated TurtleBot” on page 1-129.

• Start the Ubuntu® virtual machine desktop.
• In the Ubuntu desktop, click the Gazebo Sign Follower ROS icon to start the Gazebo world built

for this example.
• Specify the IP address and port number of the ROS master in Gazebo so that MATLAB® can

communicate with the robot simulator. For this example, the ROS master in Gazebo is http://
192.168.203.131:11311 and your host computer address is 192.168.31.1.

• Start the ROS 1 network using rosinit.

masterIP = '192.168.203.131';
setenv('ROS_IP','192.168.31.1');
setenv('ROS_MASTER_URI',['http://' masterIP ':11311']);

rosinit(masterIP,11311)

The value of the ROS_IP environment variable, 192.168.31.1, will be used to set the advertised address for the ROS node.
Initializing global node /matlab_global_node_46296 with NodeURI http://192.168.31.1:57058/

Setup ROS Communication

Create publishers and subscribers to relay messages to and from the robot simulator over ROS
network. You need subscribers for the image and odometry data. To control the robot, set up a
publisher to send velocity commands using /cmd_vel.

imgSub = rossubscriber("/camera/rgb/image_raw");

odomSub = rossubscriber("/odom");

[velPub, velMsg] = rospublisher("/cmd_vel", "geometry_msgs/Twist");

 Sign Following Robot with ROS in MATLAB

2-73

Define the image processing color threshold parameters. Each row defines the threshold values for
the different colors.

colorThresholds = [100 255 0 55 0 50; ... % Red
 0 50 50 255 0 50; ... % Green
 0 40 0 55 50 255]'; % Blue

Create Sign Following Controller Using Stateflow® Chart

This example provides an example helper MATLAB Stateflow® chart that takes in the image size,
coordinates from processed image, and the robot odometry poses. The chart provides linear and
angular velocity to drive the robot based on these inputs.

controller = ExampleHelperSignFollowingControllerChart;
open('ExampleHelperSignFollowingControllerChart');

2 ROS 2 Featured Examples

2-74

Run Control Loop

This section runs the controller to receive images and move the robot to follow the sign. The
controller does the following steps:

• Gets the latest image and odometry message from the ROS network.
• Runs the algoritm for detecting image features (ExampleHelperSignFollowingProcessImg).
• Generates control commands from the Stateflow® chart using step.
• Publishes the velocity control commands to the ROS network.

To visualize the masked image the robot sees, change the value of doVisualization variable to
true.

 Sign Following Robot with ROS in MATLAB

2-75

ExampleHelperSignFollowingSetupPreferences;

% Control the visualization of the mask
doVisualization = false;

r = rateControl(10);
receive(imgSub); % Wait to receive an image message before starting the loop
receive(odomSub);
while(~controller.done)
 % Get latest sensor messages and process them
 imgMsg = imgSub.LatestMessage;
 odomMsg = odomSub.LatestMessage;
 [img,pose] = ExampleHelperSignFollowingROSProcessMsg(imgMsg, odomMsg);

 % Run vision and control functions
 [mask,blobSize,blobX] = ExampleHelperSignFollowingProcessImg(img, colorThresholds);
 step(controller,'blobSize',blobSize,'blobX',blobX,'pose',pose);
 v = controller.v;
 w = controller.w;

 % Publish velocity commands
 velMsg.Linear.X = v;
 velMsg.Angular.Z = w;
 send(velPub,velMsg);

 % Optionally visualize
 % NOTE: Visualizing data will slow down the execution loop.
 % If you have Computer Vision Toolbox, we recommend using
 % vision.DeployableVideoPlayer instead of imshow.
 if doVisualization
 imshow(mask);
 title(['Linear Vel: ' num2str(v) ' Angular Vel: ' num2str(w)]);
 drawnow('limitrate');
 end
 % Pace the execution loop.
 waitfor(r);
end

You should see the robot moving in the ROS-based robot simulator as shown below.

2 ROS 2 Featured Examples

2-76

 Sign Following Robot with ROS in MATLAB

2-77

Sign Following Robot with ROS in Simulink
This example shows how to use Simulink® to control a simulated robot running on a separate ROS-
based simulator.

In this example, you run a model that implements a sign-following algorithm and controls the
simulated robot to follow a path based on signs in the environment. The algorithm receives the
location information and camera information from the simulated robot, which is running in a separate
ROS-based simulator. The algorithm detects the color of the sign and sends the velocity commands to
turn the robot based on the color. In this example, the algorithm is designed to turn left when robot
encounters a blue sign and turn right when robot encounters a green sign. FInally the robot stops
when it encounters a red sign.

To see this example using ROS 2 or MATLAB®, see “Sign Following Robot with ROS in MATLAB” on
page 2-73.

Start Robot Simulator

Start a ROS-based simulator for a differential-drive robot and configure the Simulink® connection
with the robot simulator.

This example uses a virtual machine (VM) available for download at Virtual Machine with ROS 2
Melodic and Gazebo.

• Start the Ubuntu® virtual machine desktop.
• In the Ubuntu desktop, click the Gazebo Sign Follower ROS icon to start the Gazebo world built

for this example.

Open Model and Configure Simulink

Setup the Simulink ROS preferences to communicate with the robot simulator.

Open the example model.

open_system('signFollowingRobotROS.slx');

To configure the network settings for ROS.

• From Simulation tab, Prepare group, select ROS Network.
• Specify the IP address and port number of the ROS master in Gazebo. For this example, the ROS

master in Gazebo is 192.168.203.128:11311. Enter 192.168.203.128 in the Hostname/IP
address box and 11311 in the Port Number box.

• Click OK to apply changes and close the dialog.

On each time step, the algorithm detects a sign from the camera feed, decides on turn and drives it
forward. The sign detection is done in the Image Proecessing subsystem of the model.

open_system('signFollowingRobotROS/Image Processing');

The Sign Tracking Logic subsystem implements a Stateflow® chart that takes in the detected
image size and coordinates from Image Processing and provides linear and angular velocity to drive
the robot.

open_system('signFollowingRobotROS/Sign Tracking Logic');

2 ROS 2 Featured Examples

2-78

https://www.mathworks.com/ros2_vm_install/v2
https://www.mathworks.com/ros2_vm_install/v2

Run the Model

Run the model and observe the behavior of the robot in the robot simulator.

• The video viewers show the actual camera feed and the detected sign image.
• In the simulator, the robot follows the sign and turns based on the color.
• The simulation stops automatically once the robot reaches the red sign at the end.

 Sign Following Robot with ROS in Simulink

2-79

Sign Following Robot with ROS 2 in MATLAB
This example shows you how to use MATLAB® to control a simulated robot running on a separate
ROS-based simulator over ROS 2 network.

In this example, you run a MATLAB script that implements a sign-following algorithm and controls
the simulated robot to follow a path based on signs in the environment. The algorithm receives the
location information and camera information from the simulated robot, which is running in a separate
ROS-based simulator. The algorithm detects the color of the sign and sends the velocity commands to
turn the robot based on the color. In this example, the algorithm is designed to turn left when robot
encounters a blue sign and turn right when robot encounters a green sign. Finally the robot stops
when it encounters a red sign.

To see this example using ROS 1 or Simulink®, see “Sign Following Robot with ROS in MATLAB” on
page 2-73.

Connect to a Robot Simulator

Start a ROS-based simulator for a differential-drive robot and configure the MATLAB® connection
with the robot simulator.

To follow along with this example, download a virtual machine using instructions in “Get Started with
Gazebo and a Simulated TurtleBot” on page 1-129.

• Start the Ubuntu® virtual machine desktop.
• In the Ubuntu desktop, click the Gazebo ROS2 Maze icon to start the Gazebo world built for this

example.
• In MATLAB Command Window, set the ROS_DOMAIN_ID environment variable to 25 to match the

robot simulator ROS bridge settings and run ros2 topic list to verify that the topics from the
robot simulator are visible in MATLAB.

setenv('ROS_DOMAIN_ID','25')
ros2('topic','list')

/camera/camera_info
/camera/image_raw
/clock
/cmd_vel
/imu
/joint_states
/odom
/parameter_events
/rosout
/scan
/tf

Setup ROS 2 Communication

Create a ROS 2 node using the specified domain ID.

domainID = 25;
n = ros2node("matlab_example_robot",domainID);

Create publishers and subscribers to relay messages to and from the robot simulator over the ROS 2
network. You need subscribers for the image and odometry data. To control the robot, set up a
publisher to send velocity commands using the /cmd_vel topic.

2 ROS 2 Featured Examples

2-80

imgSub = ros2subscriber(n, "/camera/image_raw","sensor_msgs/Image");

odomSub = ros2subscriber(n, "/odom","nav_msgs/Odometry");

[velPub, velMsg] = ros2publisher(n, "/cmd_vel", "geometry_msgs/Twist");

Define the image processing color threshold parameters. Each row defines the threshold values for
the different colors.

colorThresholds = [100 255 0 55 0 50; ... % Red
 0 50 50 255 0 50; ... % Green
 0 40 0 55 50 255]'; % Blue

Create Sign Following Controller Using Stateflow® Chart

This example provides an example helper MATLAB Stateflow® chart that takes in the image size,
coordinates from processed image, and the robot odometry poses. The chart provides linear and
angular velocity to drive the robot based on these inputs.

controller = ExampleHelperSignFollowingControllerChart;
open('ExampleHelperSignFollowingControllerChart');

 Sign Following Robot with ROS 2 in MATLAB

2-81

Run Control Loop

This section runs the controller to receive images and move the robot to follow the sign. The
controller does the following steps:

• Gets the latest image and odometry message from the ROS network.
• Runs the algoritm for detecting image features (ExampleHelperSignFollowingProcessImg).
• Generates control commands from the Stateflow® chart using step.
• Publishes the velocity control commands to the ROS network.

To visualize the masked image the robot sees, change the value of doVisualization variable to
true.

2 ROS 2 Featured Examples

2-82

ExampleHelperSignFollowingSetupPreferences;

% Control the visualization of the mask
doVisualization = false;

r = rateControl(10);
receive(imgSub); % Wait to receive an image message before starting the loop
receive(odomSub);
while(~controller.done)
 % Get latest sensor messages and process them
 imgMsg = imgSub.LatestMessage;
 odomMsg = odomSub.LatestMessage;
 [img,pose] = ExampleHelperSignFollowingProcessMsg(imgMsg, odomMsg);

 % Run vision and control functions
 [mask,blobSize,blobX] = ExampleHelperSignFollowingProcessImg(img, colorThresholds);
 step(controller,'blobSize',blobSize,'blobX',blobX,'pose',pose);
 v = controller.v;
 w = controller.w;

 % Publish velocity commands
 velMsg.linear.x = v;
 velMsg.angular.z = w;
 send(velPub,velMsg);

 % Optionally visualize
 % NOTE: Visualizing data will slow down the execution loop.
 % If you have Computer Vision Toolbox, we recommend using
 % vision.DeployableVideoPlayer instead of imshow.
 if doVisualization
 imshow(mask);
 title(['Linear Vel: ' num2str(v) ' Angular Vel: ' num2str(w)]);
 drawnow('limitrate');
 end
 % Pace the execution loop.
 waitfor(r);
end

You should see the robot moving in the ROS-based robot simulator as shown below.

 Sign Following Robot with ROS 2 in MATLAB

2-83

2 ROS 2 Featured Examples

2-84

Sign Following Robot with ROS 2 in Simulink
Use Simulink® to control a simulated robot running on a separate ROS-based simulator over ROS 2
network.

In this example, you run a model that implements a sign-following algorithm and controls the
simulated robot to follow a path based on signs in the environment. The algorithm receives the
location information and camera information from the simulated robot, which is running in a separate
ROS-based simulator. The algorithm detects the color of the sign and sends the velocity commands to
turn the robot based on the color. In this example, the algorithm is designed to turn left when robot
encounters a blue sign and turn right when robot encounters a green sign. FInally the robot stops
when it encounters a red sign.

To see this example using ROS 1 or MATLAB®, see “Sign Following Robot with ROS in MATLAB” on
page 2-73.

Start Robot Simulator

Start a ROS-based simulator for a differential-drive robot and configure the Simulink® connection
with the robot simulator.

This example uses a virtual machine (VM) available for download using instructions in “Get Started
with Gazebo and a Simulated TurtleBot” on page 1-129.

• Start the Ubuntu® virtual machine desktop.
• In the Ubuntu desktop, click the Gazebo ROS2 Maze icon to start the Gazebo world built for this

example.
• In MATLAB Command Window, set the ROS_DOMAIN_ID environment variable to 25 to match the

robot simulator settings and run ros2 topic list to verify that the topics from the robot
simulator are visible in MATLAB.

setenv('ROS_DOMAIN_ID','25')
ros2('topic','list')

/parameter_events

Open Model and Configure Simulink

Setup the Simulink ROS preferences to communicate with the robot simulator.

Open the example model.

open_system('signFollowingRobotROS2.slx');

To configure the network settings for ROS 2.

• Under the Simulation tab, in PREPARE, select ROS Toolbox > ROS Network.
• In Configure ROS Network Addresses, set the ROS 2 Domain ID value to 25.
• Click OK to apply changes and close the dialog.

On each time step, the algorithm detects a sign from the camera feed, decides on turn and drives it
forward. The sign detection is done in the Image Proecessing subsystem of the model.

open_system('signFollowingRobotROS2/Image Processing');

 Sign Following Robot with ROS 2 in Simulink

2-85

The Sign Tracking Logic subsystem implements a Stateflow® chart that takes in the detected
image size and coordinates from Image Processing and provides linear and angular velocity to drive
the robot.

open_system('signFollowingRobotROS2/Sign Tracking Logic');

Run the Model

Run the model and observe the behavior of the robot in the robot simulator.

• The video viewers show the actual camera feed and the detected sign image.
• In the simulator, the robot follows the sign and turns based on the color.
• The simulation stops automatically once the robot reaches the red sign at the end.

2 ROS 2 Featured Examples

2-86

Automated Parking Valet with ROS in MATLAB
This example shows how to distribute the “Automated Parking Valet” (Automated Driving Toolbox)
application among various nodes in a ROS network. Depending on your system, this example is
provided for ROS and ROS 2 networks using either MATLAB® or Simulink® . The example shown
here uses ROS and MATLAB. For the other examples, see:

• “Automated Parking Valet with ROS in Simulink” on page 2-99
• “Automated Parking Valet with ROS 2 in MATLAB” on page 2-107
• “Automated Parking Valet with ROS 2 in Simulink” on page 2-118

Overview

This example is an extension of the “Automated Parking Valet” (Automated Driving Toolbox) example
in Automated Driving Toolbox™. A typical autonmous application has the following components.

For simplicity, this example concentrates on Planning, Control, and a simplified Vehicle Model. The
example uses prerecorded data to substitute localization information.

This application demonstrates a typical split of various functions into ROS nodes. The following
picture shows how the above example is split into various nodes. Each node: Planning, Control and
Vehicle is a ROS node implementing the functionalities shown as below. The interconnections
between the nodes show the topics used on each interconnection of the nodes.

 Automated Parking Valet with ROS in MATLAB

2-87

Setup

First, load a route plan and a given costmap used by the behavior planner and path analyzer.
Behavior Planner, Path Planner, Path Analyzer, Lateral and Lognitudinal Controllers are implemented
by helper classes, which are setup with this example helper function call.

exampleHelperROSValetSetupGlobals;

The initialized globals are organized as fields in the global structure, valet.

disp(valet)

 mapLayers: [1×1 struct]
 costmap: [1×1 vehicleCostmap]
 vehicleDims: [1×1 vehicleDimensions]
 maxSteeringAngle: 35
 data: [1×1 struct]
 routePlan: [4×3 table]
 currentPose: [4 12 0]
 vehicleSim: [1×1 ExampleHelperROSValetVehicleSimulator]
 behavioralPlanner: [1×1 ExampleHelperROSValetBehavioralPlanner]
 motionPlanner: [1×1 pathPlannerRRT]
 goalPose: [56 11 0]
 refPath: [1×1 driving.Path]
 transitionPoses: [14×3 double]
 directions: [522×1 double]
 currentVel: 0
 approxSeparation: 0.1000
 numSmoothPoses: 522
 maxSpeed: 5
 startSpeed: 0
 endSpeed: 0
 refPoses: [522×3 double]
 cumLengths: [522×1 double]
 curvatures: [522×1 double]
 refVelocities: [522×1 double]
 sampleTime: 0.1000
 lonController: [1×1 ExampleHelperROSValetLongitudinalController]

2 ROS 2 Featured Examples

2-88

 controlRate: [1×1 ExampleHelperROSValetFixedRate]
 pathAnalyzer: [1×1 ExampleHelperROSValetPathAnalyzer]
 parkPose: [36 44 90]

Initialize the ROS network.

rosinit;

Launching ROS Core...
..Done in 5.3625 seconds.

Initializing ROS master on http://192.168.0.10:60903.
Initializing global node /matlab_global_node_49911 with NodeURI http://sbd508773glnxa64:42335/

masterHost = 'localhost';

The functions in the application are distributed amongst ROS nodes. This example uses three ROS
nodes: planningNode, controlNode, and vehicleNode.

Planning

The Planning node calculates each path segment based on the current vehicle position. This node is
responsible for generating the smooth path and publishes the path to the network.

This node publishes these topics:

• /smoothpath

 Automated Parking Valet with ROS in MATLAB

2-89

• /velprofile
• /directions
• /speed
• /nextgoal

The node subscribes to these topics:

• /currentvel
• /currentpose
• /desiredvel
• /reachgoal

On receiving a /reachgoal message, the node runs the
exampleHelperROS2ValetPlannerCallback callback, which plans the next segment.

Create the planning node

planningNode = ros.Node('planning', masterHost);

Create publishers for planning node. Specify the message types for the publisher or subscriber for a
topic that is not present on ROS network.

planning.PathPub = ros.Publisher(planningNode, '/smoothpath', 'std_msgs/Float64MultiArray');
planning.VelPub = ros.Publisher(planningNode, '/velprofile', 'std_msgs/Float64MultiArray');
planning.DirPub = ros.Publisher(planningNode, '/directions', 'std_msgs/Float64MultiArray');

2 ROS 2 Featured Examples

2-90

planning.SpeedPub = ros.Publisher(planningNode,'/speed','std_msgs/Float64MultiArray');
planning.NxtPub = ros.Publisher(planningNode, '/nextgoal', 'geometry_msgs/Pose2D');

Create the subscribers for the planner, planningNode.

planning.CurVelSub = ros.Subscriber(planningNode, '/currentvel', 'std_msgs/Float64');
planning.CurPoseSub = ros.Subscriber(planningNode, '/currentpose', 'geometry_msgs/Pose2D');
planning.DesrVelSub = ros.Subscriber(planningNode, '/desiredvel', 'std_msgs/Float64');

Create subscriber, GoalReachSub, to listen to the /reachgoal topic of planning node and specify
the callback action.

GoalReachSub = ros.Subscriber(planningNode, '/reachgoal', 'std_msgs/Bool');
GoalReachSub.NewMessageFcn = @(~,msg)exampleHelperROSValetPlannerCallback(msg, planning, valet);

Control

The Control node is responsible for longitudinal and lateral controllers. This node publishes these
topics:

• /steeringangle
• /accelcmd
• /decelcmd
• /vehdir
• /reachgoal

The node subscribes to these topics:

• /smoothpath
• /directions
• /speed
• /currentpose
• /currentvel
• /nextgoal
• /velprofile

On receiving a /velprofile message, the node runs the
exampleHelperROS2ValetControlCallback callback, which sends control messages to the
vehicle

 Automated Parking Valet with ROS in MATLAB

2-91

Create the controller, controlNode, and setup the publishers and subscribers in the node.

controlNode = ros.Node('control', masterHost);

% Publishers for controlNode
control.SteeringPub = ros.Publisher(controlNode, '/steeringangle', 'std_msgs/Float64');
control.AccelPub = ros.Publisher(controlNode, '/accelcmd', 'std_msgs/Float64');
control.DecelPub = ros.Publisher(controlNode, '/decelcmd', 'std_msgs/Float64');
control.VehDirPub = ros.Publisher(controlNode, '/vehdir', 'std_msgs/Float64');
control.VehGoalReachPub = ros.Publisher(controlNode, '/reachgoal');

% Subscribers for controlNode
control.PathSub = ros.Subscriber(controlNode, '/smoothpath');
control.DirSub = ros.Subscriber(controlNode, '/directions');
control.SpeedSub = ros.Subscriber(controlNode, '/speed');
control.CurPoseSub = ros.Subscriber(controlNode, '/currentpose');
control.CurVelSub = ros.Subscriber(controlNode, '/currentvel');
control.NextGoalSub = ros.Subscriber(controlNode, '/nextgoal');

% Create subscriber for /velprofile for control node and provide the callback function.

2 ROS 2 Featured Examples

2-92

VelProfSub = ros.Subscriber(controlNode, '/velprofile');
VelProfSub.NewMessageFcn = @(~,msg)exampleHelperROSValetControlCallback(msg, control, valet);

Vehicle

The Vehicle node is responsible for simulating the vehicle model. This node publishes these topics:

• /currentvel
• /currentpose

The node subscribes to these topics:

• /accelcmd
• /decelcmd
• /vehdir
• /steeringangle

On receiving a /steeringangle message, the vehicle simulator is run in the callback function,
exampleHelperROSValetVehicleCallback.

 Automated Parking Valet with ROS in MATLAB

2-93

% Create vehicle node.
vehicleNode = ros.Node('vehicle', masterHost);

% Create publishers for vehicle node.
vehicle.CurVelPub = ros.Publisher(vehicleNode, '/currentvel');
vehicle.CurPosePub = ros.Publisher(vehicleNode, '/currentpose');

% Create subscribers for vehicle node.
vehicle.AccelSub = ros.Subscriber(vehicleNode, '/accelcmd');
vehicle.DecelSub = ros.Subscriber(vehicleNode, '/decelcmd');
vehicle.DirSub = ros.Subscriber(vehicleNode, '/vehdir');

% Create subscriber for |/steeringangle|, which runs the vehicle simulator
% callback.
SteeringSub = ros.Subscriber(vehicleNode, '/steeringangle', ...
 @(~,msg)exampleHelperROSValetVehicleCallback(msg, vehicle, valet));

2 ROS 2 Featured Examples

2-94

Initialize Simulation

To initialize the simulation, send the first velocity message and current pose message. This message
causes the planner to start the planning loop.

curVelMsg = getROSMessage(vehicle.CurVelPub.MessageType);
curVelMsg.Data = valet.vehicleSim.getVehicleVelocity;
send(vehicle.CurVelPub, curVelMsg);

curPoseMsg = getROSMessage(vehicle.CurPosePub.MessageType);
curPoseMsg.X = valet.currentPose(1);
curPoseMsg.Y = valet.currentPose(2);
curPoseMsg.Theta = valet.currentPose(3);
send(vehicle.CurPosePub, curPoseMsg);

reachMsg = getROSMessage(control.VehGoalReachPub.MessageType);
reachMsg.Data = true;
send(control.VehGoalReachPub, reachMsg);

Main Loop

The main loop waits for the behavioralPlanner to say the vehicle reached the prepark position.

while ~reachedDestination(valet.behavioralPlanner)
 pause(1);
end

% Show the vehicle simulation figure.
showFigure(valet.vehicleSim);

 Automated Parking Valet with ROS in MATLAB

2-95

Park Maneuver

The parking maneuver callbacks are slightly different from the normal driving manueuver. Replace
the callbacks for the /velprofile and /reachgoal subscribers.

VelProfSub.NewMessageFcn = @(~,msg)exampleHelperROSValetParkControlCallback(msg, control, valet);
GoalReachSub.NewMessageFcn = @(~,msg)exampleHelperROSValetParkManeuver(msg, planning, valet);

pause(1);
reachMsg = getROSMessage(control.VehGoalReachPub.MessageType);
reachMsg.Data = false;
send(control.VehGoalReachPub, reachMsg);

% Receive a message from the |/reachgoal| topic using the subcriber. This
% waits until a new message is received. Display the figure. The vehicle
% has completed the full automated valet manuever.
receive(GoalReachSub);

exampleHelperROSValetCloseFigures;
snapnow;

2 ROS 2 Featured Examples

2-96

Delete the simulator and shutdown all the nodes by clearing publishers, subscribers and node
handles.

delete(valet.vehicleSim);

% Clear variables that were created above.
clear('valet');

GoalReachSub.NewMessageFcn = [];
VelProfSub.NewMessageFcn = [];

clear('planning', 'planningNode', 'GoalReachSub');
clear('control', 'controlNode', 'VelProfSub');
clear('vehicle', 'vehicleNode', 'SteeringSub');
clear('curPoseMsg', 'curVelMsg', 'reachMsg');
clear('masterHost');

% Shutdown the ROS network.
rosshutdown;

 Automated Parking Valet with ROS in MATLAB

2-97

Shutting down global node /matlab_global_node_49911 with NodeURI http://sbd508773glnxa64:42335/
Shutting down ROS master on http://192.168.0.10:60903.
.....

2 ROS 2 Featured Examples

2-98

Automated Parking Valet with ROS in Simulink
Distribute an automated parking valet application among various nodes in a ROS network in
Simulink®. This example extends the “Automated Parking Valet” (Automated Driving Toolbox)
example in the Automated Driving Toolbox™. Using the Simulink model in the Automated Parking
Valet in Simulink example, tune the planner, controller and vehicle dynamics parameters before
partitioning the model into ROS nodes.

Prerequisite: “Automated Parking Valet” (Automated Driving Toolbox), “Generate a Standalone ROS
Node from Simulink®” on page 1-120

Introduction

A typical autonomous vehicle application has the following workflow.

This example concentrates on simulating the Planning, Control and the Vehicle components. For
Localization, this example uses pre-recorded map localization data. The Planning component are
further divided into Behavior planner and Path Planner components. This results in a ROS network
comprised of four ROS nodes: Behavioral Planner, Path Planner, Controller and Vehicle
Sim. The following figure shows the relationships between each ROS node in the network and the
topics used in each.

 Automated Parking Valet with ROS in Simulink

2-99

Explore the Simulink ROS nodes and connectivity

Observe the division of the components into four separate Simulink models. Each Simulink model
represents a ROS node that sends and receives messages on different topics.

Vehicle Sim Node

1. Open the vehicle model.

open_system('ROSValetVehicleExample');

2. The Subscribe subsystem contains the ROS Subscribe blocks that read input data from the
Controller on page 2-0 node.

2 ROS 2 Featured Examples

2-100

3. The Vehicle model subsystem contains a Bicycle Model (Automated Driving Toolbox) block,
Vehicle Body 3DOF, to simulate the vehicle controller effects and sends the vehicle information
over the ROS network through ROS Publish blocks in the Publish subsystem.

Behavioral Planner Node

1. Open the behavioral planner model.

open_system('ROSValetBehavioralPlannerExample');

2. This model reads the current vehicle pose, velocity, and direction from the ROS network, and sends
the next goal. It checks if the vehicle has reached the goal pose of the segment using
exampleHelperROSValetGoalChecker.

3. The Behavior Planner and Goal Checker model runs when a new message is available on
either /currentpose or /currentvel.

4. The model sends the status if the vehicle has reached the parking goal using the /reachgoal
topic, which uses a std_msgs/Bool message. All the models stop simulation when this message is
true.

 Automated Parking Valet with ROS in Simulink

2-101

Path Planner Node

1. Open the path planner model.

open_system('ROSValetPathPlannerExample');

2. This model plans a feasible path through the environment map using a pathPlannerRRT
(Automated Driving Toolbox) object, which implements the optimal rapidly exploring random tree
(RRT*) algorithm and sends the plan to the controller over the ROS network.

3. The Path Planner subsystem runs when a new message is available on /plannerConfig or /
nextgoal topics.

2 ROS 2 Featured Examples

2-102

Controller Node

1. Open the vehicle controller model.

open_system('ROSValetControllerExample');

2. This model calculates and sends the steering and velocity commands over the ROS network.

3. The Controller subsystem runs when a new message is available on the /velprofile topic.

Simulate the ROS nodes to verify partitioning

Verify that the behavior of the model remains the same after partitioning the system into four ROS
nodes.

1. Run rosinit in MATLAB® Command Window to initialize the global node and ROS master

rosinit

Launching ROS Core...
.................................Done in 7.169 seconds.
Initializing ROS master on http://192.168.203.1:51612.
Initializing global node /matlab_global_node_70835 with NodeURI http://ah-sradford:58388/

2. Load the pre-recorded localization map data in MATLAB base workspace using the
exampleHelperROSValetLoadLocalizationData helper function.

 Automated Parking Valet with ROS in Simulink

2-103

exampleHelperROSValetLoadLocalizationData;

3. Open the simulation model.

open_system('ROSValetSimulationExample.slx');

In the left parking selection area, you can also select a spot. The default parking spot is the sixth spot
at the top row.

4. In the SIMULATION tab, click Run from SIMULATE section or run
sim('ROSValetSimulationExample.slx') in MATLAB Command Window. A figure opens and
shows how the vehicle tracks the reference path. The blue line represents the reference path while
the red line is the actual path traveled by the vehicle. Simulation for all the models stop when the
vehicle reaches the final parking spot.

sim('ROSValetSimulationExample.slx');

Simulation Results

The Visualization subsystem in the vehicle model generates the results for this example.

open_system('ROSValetVehicleExample/Vehicle model/Visualization');

The visualizePath block is responsible for creating and updating the plot of the vehicle paths
shown previously. The vehicle speed and steering commands are displayed in a scope.

open_system("ROSValetVehicleExample/Vehicle model/Visualization/Commands")

2 ROS 2 Featured Examples

2-104

Deploy ROS Nodes

Generate ROS applications for Behavioral planner, Path planner, Controller nodes, and
simulate the Vehicle node in MATLAB and compare the results with simulation. For more
informaiton on generating ROS notes, see “Generate a Standalone ROS Node from Simulink®” on
page 1-120.

1. Deploy the Behavioral planner, Path planner and Controller ROS nodes.

2. Open the vehicle model.

open_system('ROSValetVehicleExample');

3. From the Simulation tab, click Run to start the simulation.

4. Observe the vehicle movement on the plot and compare the results from simulation run.

 Automated Parking Valet with ROS in Simulink

2-105

5. Shut down the ROS network using rosshutdown.

rosshutdown

Shutting down global node /matlab_global_node_70835 with NodeURI http://ah-sradford:58388/
Shutting down ROS master on http://192.168.203.1:51612.

2 ROS 2 Featured Examples

2-106

Automated Parking Valet with ROS 2 in MATLAB
This example shows how you can distribute “Automated Parking Valet” (Automated Driving Toolbox)
application among various nodes in a ROS 2 network.

Overview

This example is an extension of the “Automated Parking Valet” (Automated Driving Toolbox) example
in Automated Driving Toolbox™. A typical autonmous application has the following components.

For simplicity, this example concentrates on Planning, Control, and a simplified Vehicle Model. The
example uses prerecorded data to substitute localization information.

This application demonstrates a typical split of various functions into ROS nodes. The following
picture shows how the above example is split into various nodes. Each node: Planning, Control and
Vehicle is a ROS node implementing the functionalities shown as below. The interconnections
between the nodes show the topics used on each interconnection of the nodes.

 Automated Parking Valet with ROS 2 in MATLAB

2-107

Setup

First, load a route plan and a given costmap used by the behavior planner and path analyzer.
Behavior Planner, Path Planner, Path Analyzer, Lateral and Lognitudinal Controllers are implemented
by helper classes, which are setup with this example helper function call.

exampleHelperROSValetSetupGlobals;

% The initialized globals are organized as fields in the global structure
% |valet|.
disp(valet)

 mapLayers: [1×1 struct]
 costmap: [1×1 vehicleCostmap]
 vehicleDims: [1×1 vehicleDimensions]
 maxSteeringAngle: 35
 data: [1×1 struct]
 routePlan: [4×3 table]
 currentPose: [4 12 0]
 vehicleSim: [1×1 ExampleHelperROSValetVehicleSimulator]
 behavioralPlanner: [1×1 ExampleHelperROSValetBehavioralPlanner]
 motionPlanner: [1×1 pathPlannerRRT]
 goalPose: [56 11 0]
 refPath: [1×1 driving.Path]
 transitionPoses: [14×3 double]
 directions: [522×1 double]
 currentVel: 0
 approxSeparation: 0.1000
 numSmoothPoses: 522
 maxSpeed: 5
 startSpeed: 0
 endSpeed: 0
 refPoses: [522×3 double]
 cumLengths: [522×1 double]
 curvatures: [522×1 double]
 refVelocities: [522×1 double]
 sampleTime: 0.1000
 lonController: [1×1 ExampleHelperROSValetLongitudinalController]
 controlRate: [1×1 ExampleHelperROSValetFixedRate]
 pathAnalyzer: [1×1 ExampleHelperROSValetPathAnalyzer]
 parkPose: [36 44 90]

2 ROS 2 Featured Examples

2-108

Use nodes to split the functions in the application. This example uses three nodes: planningNode,
controlNode, and vehicleNode.

Planning

The Planning node calculates each path segment based on the current vehicle position. This node is
responsible for generating the smooth path and publishes the path to the network.

This node publishes these topics:

• /smoothpath
• /velprofile
• /directions
• /speed
• /nextgoal

The node subscribes to these topics:

• /currentvel
• /currentpose
• /desiredvel
• /reachgoal

 Automated Parking Valet with ROS 2 in MATLAB

2-109

On receiving a /reachgoal message, the node runs the
exampleHelperROS2ValetPlannerCallback callback, which plans the next segment.

% Create planning node.
planningNode = ros2node('planning');

% Create publishers for planning node. Specify the message types the first
% time you create a publisher or subscriber for a topic.
planning.PathPub = ros2publisher(planningNode, '/smoothpath', 'std_msgs/Float64MultiArray');
planning.VelPub = ros2publisher(planningNode, '/velprofile', 'std_msgs/Float64MultiArray');
planning.DirPub = ros2publisher(planningNode, '/directions', 'std_msgs/Float64MultiArray');
planning.SpeedPub = ros2publisher(planningNode,'/speed','std_msgs/Float64MultiArray');
planning.NxtPub = ros2publisher(planningNode, '/nextgoal', 'geometry_msgs/Pose2D');

% Create subscribers for planning node.
planning.CurVelSub = ros2subscriber(planningNode, '/currentvel', 'std_msgs/Float64');
planning.CurPoseSub = ros2subscriber(planningNode, '/currentpose', 'geometry_msgs/Pose2D');
planning.DesrVelSub = ros2subscriber(planningNode, '/desiredvel', 'std_msgs/Float64');

% Create GoalReachSub part of planning node and provide the callback.
GoalReachSub = ros2subscriber(planningNode, '/reachgoal', 'std_msgs/Bool');
GoalReachSub.NewMessageFcn = @(msg)exampleHelperROS2ValetPlannerCallback(msg, planning, valet);

2 ROS 2 Featured Examples

2-110

Control

The Control node is responsible for longitudinal and lateral controllers. This node publishes these
topics:

• /steeringangle
• /accelcmd
• /decelcmd
• /vehdir
• /reachgoal

The node subscribes to these topics:

• /smoothpath
• /directions
• /speed
• /currentpose
• /currentvel
• /nextgoal
• /velprofile

 Automated Parking Valet with ROS 2 in MATLAB

2-111

On receiving a /velprofile message, the node runs the
exampleHelperROS2ValetControlCallback callback, which sends control messages to the
vehicle

% Create control node
controlNode = ros2node('control');

% Create publishers for control node
control.SteeringPub = ros2publisher(controlNode, '/steeringangle', 'std_msgs/Float64');
control.AccelPub = ros2publisher(controlNode, '/accelcmd', 'std_msgs/Float64');
control.DecelPub = ros2publisher(controlNode, '/decelcmd', 'std_msgs/Float64');
control.VehDirPub = ros2publisher(controlNode, '/vehdir', 'std_msgs/Float64');
control.VehGoalReachPub = ros2publisher(controlNode, '/reachgoal');

% Create subscribers for control node. Since all the message types for the
% topics are determined above, we can use the shorter version to create
% subscribers
control.PathSub = ros2subscriber(controlNode, '/smoothpath');
control.DirSub = ros2subscriber(controlNode, '/directions');
control.SpeedSub = ros2subscriber(controlNode, '/speed');
control.CurPoseSub = ros2subscriber(controlNode, '/currentpose');

2 ROS 2 Featured Examples

2-112

control.CurVelSub = ros2subscriber(controlNode, '/currentvel');
control.NextGoalSub = ros2subscriber(controlNode, '/nextgoal');

% Create VelProfSub for control node and provide the callback
VelProfSub = ros2subscriber(controlNode, '/velprofile');
VelProfSub.NewMessageFcn = @(msg)exampleHelperROS2ValetControlCallback(msg, control, valet);

Vehicle

The Vehicle node is responsible for simulating the vehicle model. This node publishes these topics:

• /currentvel
• /currentpose

The node subscribes to these topics:

• /accelcmd
• /decelcmd
• /vehdir
• /steeringangle

% On receiving a |/steeringangle| message, the vehicle simulator is run in
% the |exampleHelperROS2ValetVehicleCallback| callback.
%
% <<../exampleHelperROSValetVehicleNode.PNG>>
%

 Automated Parking Valet with ROS 2 in MATLAB

2-113

% Create vehicle node.
vehicleNode = ros2node('vehicle');

% Create publishers for vehicle node.
vehicle.CurVelPub = ros2publisher(vehicleNode, '/currentvel');
vehicle.CurPosePub = ros2publisher(vehicleNode, '/currentpose');

% Create subscribers for vehicle node.
vehicle.AccelSub = ros2subscriber(vehicleNode, '/accelcmd');
vehicle.DecelSub = ros2subscriber(vehicleNode, '/decelcmd');
vehicle.DirSub = ros2subscriber(vehicleNode, '/vehdir');

% Create SteeringSub which runs the vehicle simulator as part of callback.
SteeringSub = ros2subscriber(vehicleNode, '/steeringangle', ...
 @(msg)exampleHelperROS2ValetVehicleCallback(msg, vehicle, valet));

Initialize Simulation

To initialize the simulation, send the first velocity message and current pose message. This message
causes the planner to start the planning loop.

curVelMsg = ros2message(vehicle.CurVelPub);
curVelMsg.data = valet.vehicleSim.getVehicleVelocity;
send(vehicle.CurVelPub, curVelMsg);

curPoseMsg = ros2message(vehicle.CurPosePub);
curPoseMsg.x = valet.currentPose(1);

2 ROS 2 Featured Examples

2-114

curPoseMsg.y = valet.currentPose(2);
curPoseMsg.theta = valet.currentPose(3);
send(vehicle.CurPosePub, curPoseMsg);

reachMsg = ros2message(control.VehGoalReachPub);
reachMsg.data = true;
send(control.VehGoalReachPub, reachMsg);

Main Loop

The main loop waits for the behavioralPlanner to say the vehicle reached the prepark position.

while ~reachedDestination(valet.behavioralPlanner)
 pause(1);
end

% Show vehicle simulation figure
showFigure(valet.vehicleSim);

 Automated Parking Valet with ROS 2 in MATLAB

2-115

Park Maneuver

The parking maneuver callbacks are slightly different from the normal driving manueuver. Replace
the callbacks for the /velprofile and /reachgoal subscribers.

VelProfSub.NewMessageFcn = @(msg)exampleHelperROS2ValetParkControlCallback(msg, control, valet);
GoalReachSub.NewMessageFcn = @(msg)exampleHelperROS2ValetParkManeuver(msg, planning, valet);

reachMsg = ros2message(control.VehGoalReachPub);
reachMsg.data = false;
send(control.VehGoalReachPub, reachMsg);

% Receive a message from the |/reachgoal| topic using the subcriber. This
% waits until a new message is received. Display the figure. The vehicle
% has completed the full automated valet manuever.

receive(GoalReachSub);

exampleHelperROSValetCloseFigures;
snapnow;

2 ROS 2 Featured Examples

2-116

Delete the simulator and shutdown all the nodes by clearing publishers, subscribers and node
handles.

delete(valet.vehicleSim);

% Clear variables that were created above.
clear('valet');

GoalReachSub.NewMessageFcn = [];
VelProfSub.NewMessageFcn = [];

clear('planning', 'planningNode', 'GoalReachSub');
clear('control', 'controlNode', 'VelProfSub');
clear('vehicle', 'vehicleNode', 'SteeringSub');
clear('curPoseMsg', 'curVelMsg', 'reachMsg');

 Automated Parking Valet with ROS 2 in MATLAB

2-117

Automated Parking Valet with ROS 2 in Simulink
This example shows how to distribute the Automated Parking Valet application among various nodes
in a ROS 2 network in Simulink® and deploy them as standalone ROS 2 nodes. This example extends
the “Automated Parking Valet” (Automated Driving Toolbox) example in the Automated Driving
Toolbox™. Using the Simulink model in the Automated Parking Valet in Simulink example, tune the
planner, controller and vehicle dynamic parameters before partitioning the model into ROS 2 nodes.

Prerequisites: “Automated Parking Valet” (Automated Driving Toolbox), “Generate a Standalone ROS
2 Node from Simulink®” on page 2-67

Introduction

This autonomous vehicle application has the following components.

This example concentrates on simulating the Planning, Control and the Vehicle components. For
Localization, this example uses pre-recorded localization map data. The Planning component is
further divided into Behavior planner and Path Planner components. This results in a ROS 2 network
comprised of four ROS 2 nodes: Behavioral Planner, Path Planner, Controller and
Vehicle. The following figure shows the relationships between each ROS 2 node in the network and
the topics used in each.

2 ROS 2 Featured Examples

2-118

Explore the Simulink ROS 2 nodes and connectivity

Observe the division of the components into four separate Simulink models. Each Simulink model
represents a ROS 2 node.

Vehicle Node

1. Open the vehicle model.

open_system('ROS2ValetVehicleExample');

2. The Subscribe subsystem contains the ROS 2 Subscribe blocks that read input data from the
Controller on page 2-0 node.

 Automated Parking Valet with ROS 2 in Simulink

2-119

3. The Vehicle model subsystem contains a Bicycle Model (Automated Driving Toolbox) block,
Vehicle Body 3DOF, to simulate the vehicle controller effects and sends the vehicle information
over the ROS 2 network through ROS 2 Publish blocks in the Publish subsystem.

Behavioral Planner Node

1. Open the behavioral planner model.

open_system('ROS2ValetBehavioralPlannerExample');

2. This model reads the current vehicle information from ROS 2 network, sends the next goal and
checks if the vehicle has reached the final pose of the segment using
rosAutomatedValetHelperGoalChecker.

3. The Behavioral Planner and Goal Checker subsystem runs when a new message is available
on either /currentvel or /currentpose.

4. The model sends the status if the vehicle has reached the final parking goal using the /reachgoal
topic, which uses a std_msgs/Bool message type. All the models stop simulation when this message
is true.

2 ROS 2 Featured Examples

2-120

Path Planner Node

1. Open the path planner model.

open_system('ROS2ValetPathPlannerExample');

2. This model plans a feasible path through the environment map using a pathPlannerRRT
(Automated Driving Toolbox) object, which implements the optimal rapidly exploring random tree
(RRT*) algorithm and sends the plan to the controller over the ROS 2 network.

3. The Path Planner subsystem runs when a new message is available on /plannerConfig or /
nextgoal topics.

 Automated Parking Valet with ROS 2 in Simulink

2-121

Controller Node

1. Open the vehicle controller model.

open_system('ROS2ValetControllerExample');

2. This model calculates and sends the steering and velocity commands over the ROS 2 network.

3. The Controller subsystem runs when a new message is available on the /velprofile topic.

Simulate the ROS 2 nodes to verify partitioning

Verify that the behavior of the model remains the same after partitioning the system into four ROS 2
nodes.

1. Load the pre-recorded localization map data in MATLAB base workspace using the
exampleHelperROSValetLoadLocalizationData helper function.

exampleHelperROSValetLoadLocalizationData;

2. Open the simulation model.

open_system('ROS2ValetSimulationExample.slx');

In the left parking selection area, you can also select a spot. The default parking spot is the sixth spot
at the top row.

2 ROS 2 Featured Examples

2-122

3. In the SIMULATION tab, click Run from SIMULATE section or run
sim('ROS2ValetSimulationExample.slx') in MATLAB Command Window. A figure opens and
shows how the vehicle tracks the reference path. The blue line represents the reference path while
the red line is the actual path traveled by the vehicle. Simulation for all the models stop when the
vehicle reaches the final parking spot.

sim('ROS2ValetSimulationExample.slx');

Simulation Results

The Visualization subsystem in vehicle model generates the results for this example.

open_system('ROS2ValetVehicleExample/Vehicle model/Visualization');

The visualizePath block is responsible for creating and updating the plot of the vehicle paths
shown previously. The vehicle speed and steering commands are displayed in a scope.

open_system("ROS2ValetVehicleExample/Vehicle model/Visualization/Commands")

 Automated Parking Valet with ROS 2 in Simulink

2-123

Deploy ROS 2 Nodes

Generate ROS 2 applications for Behavioral Planner, Path planner and Controller nodes.
Simulate the Vehicle node in MATLAB and compare the results with simulation.

Generate and deploy Behavioral Planner, Path Planner and Controller node applications
using exampleHelperROS2ValetDeployNodes helper function. The helper function calls slbuild
(Simulink) command with the name of the Simulink model as input argument, for each model, to
generate C++ code and deploy the application on the host computer.

exampleHelperROS2ValetDeployNodes(); % generate C++ code and deploy the application for ROS 2 nodes

Starting build procedure for: ROS2ValetBehavioralPlannerExample
Generating code and artifacts to 'Model specific' folder structure
Generating code into build folder: C:\Users\joshchen\OneDrive - MathWorks\Documents\MATLAB\Examples\ros-ex88924338\ROS2ValetBehavioralPlannerExample_ert_rtw

Generated code for 'ROS2ValetBehavioralPlannerExample' is up to date because no structural, parameter or code replacement library changes were found.
Evaluating PostCodeGenCommand specified in the model
Using toolchain: Colcon Tools
Building 'ROS2ValetBehavioralPlannerExample': all
Running colcon build in folder 'C:/Users/joshchen/OneDrive - MathWorks/Documents/MATLAB/Examples/ros-ex88924338'.Done.
Success

2 ROS 2 Featured Examples

2-124

Successfully generated all binary outputs.
Successful completion of build procedure for: ROS2ValetBehavioralPlannerExample
Creating HTML report file ROS2ValetBehavioralPlannerExample_codegen_rpt.html

Build Summary

Top model targets built:

Model Action Rebuild Reason
===
ROS2ValetBehavioralPlannerExample Code compiled Compilation artifacts were out of date.

1 of 1 models built (0 models already up to date)
Build duration: 0h 1m 32.504s
Starting build procedure for: ROS2ValetPathPlannerExample
Generating code and artifacts to 'Model specific' folder structure
Generating code into build folder: C:\Users\joshchen\OneDrive - MathWorks\Documents\MATLAB\Examples\ros-ex88924338\ROS2ValetPathPlannerExample_ert_rtw
Generated code for 'ROS2ValetPathPlannerExample' is up to date because no structural, parameter or code replacement library changes were found.
Evaluating PostCodeGenCommand specified in the model
Using toolchain: Colcon Tools
Building 'ROS2ValetPathPlannerExample': all
Running colcon build in folder 'C:/Users/joshchen/OneDrive - MathWorks/Documents/MATLAB/Examples/ros-ex88924338'.Done.
Success
Successfully generated all binary outputs.
Successful completion of build procedure for: ROS2ValetPathPlannerExample
Creating HTML report file ROS2ValetPathPlannerExample_codegen_rpt.html

Build Summary

Top model targets built:

Model Action Rebuild Reason
===
ROS2ValetPathPlannerExample Code compiled Compilation artifacts were out of date.

1 of 1 models built (0 models already up to date)
Build duration: 0h 1m 53.874s
Starting build procedure for: ROS2ValetControllerExample
Generating code and artifacts to 'Model specific' folder structure
Generating code into build folder: C:\Users\joshchen\OneDrive - MathWorks\Documents\MATLAB\Examples\ros-ex88924338\ROS2ValetControllerExample_ert_rtw
Generated code for 'ROS2ValetControllerExample' is up to date because no structural, parameter or code replacement library changes were found.
Evaluating PostCodeGenCommand specified in the model
Using toolchain: Colcon Tools
Building 'ROS2ValetControllerExample': all
Running colcon build in folder 'C:/Users/joshchen/OneDrive - MathWorks/Documents/MATLAB/Examples/ros-ex88924338'.Done.
Success
Successfully generated all binary outputs.
Successful completion of build procedure for: ROS2ValetControllerExample
Creating HTML report file ROS2ValetControllerExample_codegen_rpt.html

Build Summary

Top model targets built:

Model Action Rebuild Reason
==
ROS2ValetControllerExample Code compiled Compilation artifacts were out of date.

 Automated Parking Valet with ROS 2 in Simulink

2-125

1 of 1 models built (0 models already up to date)
Build duration: 0h 2m 1.851s

Open the vehicle model and start simulation.

open_system("ROS2ValetVehicleExample");
set_param("ROS2ValetVehicleExample","SimulationCommand","start");

Verify that the results from simulation match with the deployed ROS 2 nodes.

2 ROS 2 Featured Examples

2-126

ROS Topics

3

ROS Network Setup
In this section...
“Introduction” on page 3-2
“Network Connection Layout” on page 3-2

Introduction
Setting up a ROS network enables communication between different devices. These participants, or
nodes, all register with a ROS master to share information. Each ROS network has only one, unique
master. Each node is usually a separate device, although one device can have multiple nodes running.
MATLAB® acts as one of these nodes when communicating on an existing ROS Network.

All devices must be connected to the same actual or virtual network for ROS connections to work. You
can create a new ROS master in MATLAB, or you can connect to an existing ROS master that is
running on a different device. If you connect to an external master, you have to know the IP address
or hostname of the device. The initial ROS master connection is created by calling rosinit. For
more information on setting up and using the ROS network, see “Network Connection and
Exploration”.

Nodes communicate by sending messages using entities called publishers, subscribers, and services.
Publishers send data using topic names, which subscribers then receive over the network. Services
use clients to request information from a server. For more information on sending messages, see
“Publishers and Subscribers”.

Network Connection Layout
The ROS network is a collection of nodes that are all connected to the ROS master. The number of
nodes can be quite large depending on your application and devices. Nodes that are registered with
the master can communicate with all other registered nodes. Each node registers different
publishers, subscribers, and services on the ROS master to send and receive information between
nodes. Even though all nodes in the ROS network are registered with the master, data is exchanged
directly between nodes. The following figure shows the layout of a ROS network with two ROS nodes.
All nodes must have bidirectional connectivity to share data across the network. Verifying these
connections is important during setup.

3 ROS Topics

3-2

Each node registers its own Node URI with the master. Other participants in the ROS network will
use this URI to contact the node. Again, this URI must be reachable by every other node in the ROS
network. To create a node in MATLAB, call rosinit. If a ROS master is already set up, MATLAB
detects it and sets the Node URI appropriately. Otherwise, it creates both a ROS master and node
that are connected.

By default, each MATLAB instance has a single global node. The node has a randomly generated
name assigned to it for uniqueness. All publishers, subscribers, service clients, and service servers
operate on this global node.

See Also
rosinit | rosnode | rostopic

Related Examples
• “Get Started with ROS” on page 1-2
• “Connect to a ROS Network” on page 1-7
• “Robot Operating System (ROS)”

 ROS Network Setup

3-3

Built-In Message Support
In this section...
“ROS Message Structure” on page 3-4
“Limitations of ROS Messages in MATLAB” on page 3-5
“ROS Data Type Conversions” on page 3-5
“Supported Messages” on page 3-6

MATLAB supports a large library of ROS message types. This topic covers how MATLAB works with
ROS Messages by describing message structure, limitations for ROS messages, and supported ROS
data types. Refer to the full list of built-in message types at the end of this article.

For information about ROS 2 messages, see “Work with Basic ROS 2 Messages” on page 2-11.

ROS Message Structure
In MATLAB, ROS messages are stored as handle objects. Therefore, all the rules of handle objects
apply, including copying, modifying, and other performance considerations. For more information on
handle objects, see “Handle Object Behavior”. Each handle points to the object for that specific
message, which contains the information relevant to that message type. The message type has a built-
in structure for the data it contains.

ROS messages store the data relevant to that message type in a way similar to structure arrays. Each
message type has a specific set of properties with their corresponding values that are individually
stored and accessed. You can specifically point to and modify each property on its own. The
MessageType property of each message contains the message type as a character vector. Also, you
can use the showdetails function to view the contents of the message.

Here is a sample 'geometry_msgs/Point', created in MATLAB using rosmessage. It contains 3
properties corresponding to a 3-D point in XYZ coordinates.

pointMsg = rosmessage('geometry_msgs/Point')

pointMsg =

 ROS Point message with properties:

 MessageType: 'geometry_msgs/Point'
 X: 0
 Y: 0
 Z: 0

 Use showdetails to show the contents of the message

You can access and modify each property by using the pointMsg handle.

pointMsg.Y = 2

pointMsg =

 ROS Point message with properties:

 MessageType: 'geometry_msgs/Point'

3 ROS Topics

3-4

 X: 0
 Y: 2
 Z: 0

 Use showdetails to show the contents of the message

For more information on the ROS message structure in MATLAB, see “Work with Basic ROS
Messages” on page 1-15.

Limitations of ROS Messages in MATLAB
Because ROS messages use independent properties, certain messages with multiple values cannot be
validated. Because each value can be set separately, the message does not validate the properties as
a whole entity. For example, a quaternion message contains w, x, y, and z properties, but the message
does not enforce that the quaternion as a whole is valid. When modifying properties, you should
ensure you are maintaining the rules required for that message.

Message properties can also have a variety of data types. MATLAB uses the rules set by ROS to
determine what these data types are. However, if they are to be used in calculations, you might have
to cast the data types to another value. The ROS data types do not convert directly to MATLAB data
types. For a detailed list of ROS data types and their MATLAB equivalent, see “ROS Data Type
Conversions” on page 3-5.

ROS Data Type Conversions
ROS message types have predetermined properties and data types for the values of those properties.
These data types must be mapped to MATLAB data types to be used in MATLAB. This table
summarizes how ROS data types are converted to MATLAB data types.

ROS Data Type Description MATLAB
bool Boolean / Unsigned 8-bit integer logical
int8 Signed 8-bit integer int8
uint8 Unsigned 8-bit integer uint8
int16 Signed 16-bit integer int16
uint16 Unsigned 16-bit integer uint16
int32 Signed 32-bit integer int32
uint32 Unsigned 32-bit integer uint32
int64 Signed 64-bit integer int64
uint64 Unsigned 64-bit integer uint64
float32 32-bit IEEE floating point single
float64 64-bit IEEE floating point double
string ASCII string (utf-8 only) char
time Seconds and nanoseconds as

signed 32-bit integers
Time object (see rostime)

duration Seconds and nanoseconds as
signed 32-bit integers

Duration object (see
rosduration)

 Built-In Message Support

3-5

Supported Messages
Here is an alphabetized list of supported ROS packages. A package can contain message types,
service types, or action types.

To get a full list of supported message types, call rosmsg list in the MATLAB Command Window.

ROS Toolbox supports ROS Indigo and Hydro platforms, but your own ROS installation may have
different message versions. To overwrite our current message catalog, you can utilize the “ROS
Custom Message Support” to generate new message definitions.

When specifying message types, input character vectors must match the character vector listed in
rosmsg list exactly. To use custom message types, MATLAB also provides a custom message
support package. For more information, see “ROS Custom Message Support” on page 3-24.

ackermann_msgs
actionlib
actionlib_msgs
actionlib_tutorials
adhoc_communication
app_manager
applanix_msgs
ar_track_alvar
arbotix_msgs
ardrone_autonomy
asmach_tutorials
audio_common_msgs
axis_camera
base_local_planner
baxter_core_msgs
baxter_maintenance_msgs
bayesian_belief_networks
blob
bond
brics_actuator
bride_tutorials
bwi_planning
bwi_planning_common
calibration_msgs
capabilities
clearpath_base
cmvision
cob_base_drive_chain
cob_camera_sensors
cob_footprint_observer
cob_grasp_generation
cob_kinematics
cob_light
cob_lookat_action
cob_object_detection_msgs
cob_perception_msgs
cob_phidgets
cob_pick_place_action
cob_relayboard
cob_script_server
cob_sound
cob_srvs

3 ROS Topics

3-6

cob_trajectory_controller
concert_msgs
control_msgs
control_toolbox
controller_manager_msgs
costmap_2d
create_node
data_vis_msgs
designator_integration_msgs
diagnostic_msgs
dna_extraction_msgs
driver_base
dynamic_reconfigure
dynamic_tf_publisher
dynamixel_controllers
dynamixel_msgs
epos_driver
ethercat_hardware
ethercat_trigger_controllers
ethzasl_icp_mapper
explorer
face_detector
fingertip_pressure
frontier_exploration
gateway_msgs
gazebo_msgs
geographic_msgs
geometry_msgs
gps_common
graft
graph_msgs
grasp_stability_msgs
grasping_msgs
grizzly_msgs
handle_detector
hector_mapping
hector_nav_msgs
hector_uav_msgs
hector_worldmodel_msgs
household_objects_database_msgs
hrpsys_gazebo_msgs
humanoid_nav_msgs
iai_content_msgs
iai_kinematics_msgs
iai_pancake_perception_action
image_cb_detector
image_exposure_msgs
image_view2
industrial_msgs
interaction_cursor_msgs
interactive_marker_proxy
interval_intersection
jaco_msgs
joint_states_settler
jsk_footstep_controller
jsk_footstep_msgs
jsk_gui_msgs
jsk_hark_msgs

 Built-In Message Support

3-7

jsk_network_tools
jsk_pcl_ros
jsk_perception
jsk_rviz_plugins
jsk_topic_tools
keyboard
kingfisher_msgs
kobuki_msgs
kobuki_testsuite
laser_assembler
laser_cb_detector
leap_motion
linux_hardware
lizi
manipulation_msgs
map_merger
map_msgs
map_store
mavros
microstrain_3dmgx2_imu
ml_classifiers
mln_robosherlock_msgs
mongodb_store
mongodb_store_msgs
monocam_settler
move_base_msgs
moveit_msgs
moveit_simple_grasps
multimaster_msgs_fkie
multisense_ros
nao_interaction_msgs
nao_msgs
nav_msgs
nav2d_msgs
nav2d_navigator
nav2d_operator
navfn
network_monitor_udp
nmea_msgs
nodelet
object_recognition_msgs
octomap_msgs
p2os_driver
pano_ros
pcl_msgs
pcl_ros
pddl_msgs
people_msgs
play_motion_msgs
polled_camera
posedetection_msgs
pr2_calibration_launch
pr2_common_action_msgs
pr2_controllers_msgs
pr2_gazebo_plugins
pr2_gripper_sensor_msgs
pr2_mechanism_controllers
pr2_mechanism_msgs

3 ROS Topics

3-8

pr2_msgs
pr2_power_board
pr2_precise_trajectory
pr2_self_test_msgs
pr2_tilt_laser_interface
program_queue
ptu_control
qt_tutorials
r2_msgs
razer_hydra
rmp_msgs
robot_mechanism_controllers
robot_pose_ekf
roboteq_msgs
robotnik_msgs
rocon_app_manager_msgs
rocon_service_pair_msgs
rocon_std_msgs
rosapi
rosauth
rosbridge_library
roscpp
roscpp_tutorials
roseus
rosgraph_msgs
rospy_message_converter
rospy_tutorials
rosruby_tutorials
rosserial_arduino
rosserial_msgs
rovio_shared
rtt_ros_msgs
s3000_laser
saphari_msgs
scanning_table_msgs
scheduler_msgs
schunk_sdh
segbot_gui
segbot_sensors
segbot_simulation_apps
segway_rmp
sensor_msgs
shape_msgs
shared_serial
sherlock_sim_msgs
simple_robot_control
smach_msgs
sound_play
speech_recognition_msgs
sr_edc_ethercat_drivers
sr_robot_msgs
sr_ronex_msgs
sr_utilities
statistics_msgs
std_msgs
std_srvs
stdr_msgs
stereo_msgs

 Built-In Message Support

3-9

stereo_wall_detection
tf
tf2_msgs
theora_image_transport
topic_proxy
topic_tools
trajectory_msgs
turtle_actionlib
turtlebot_actions
turtlebot_calibration
turtlebot_msgs
turtlesim
um6
underwater_sensor_msgs
universal_teleop
uuid_msgs
velodyne_msgs
view_controller_msgs
visp_camera_calibration
visp_hand2eye_calibration
visp_tracker
visualization_msgs
wfov_camera_msgs
wge100_camera
wifi_ddwrt
wireless_msgs
yocs_msgs
zeroconf_msgs

See Also
rosmessage | rosmsg | showdetails

Related Examples
• “Work with Basic ROS Messages” on page 1-15
• “Exchange Data with ROS Publishers and Subscribers” on page 1-25
• “Work with Specialized ROS Messages” on page 1-58

3 ROS Topics

3-10

Transform Laser Scan Data From A ROS Network
Transform laser scan data using a ROS transformation tree. When working with laser scan data, your
sensor might not be mounted in the center of the robot. Many localization algorithms make the
assumption that your sensor is mounted in the center of the robot. So depending on your robot
configuration, you must transform your laser scan data so it is relative to the robots center. This
example uses a ROS transformation tree to receive the transformations between different coordinate
frames. To transform the sensor data, you must be connected to a ROS network and have
transformations available.

Setup and connect to a ROS network. Specify the IP address of the ROS device. For this example, a
sample network is already set up with an existing transformation tree.

rosinit('192.168.233.131')

Initializing global node /matlab_global_node_68056 with NodeURI http://192.168.233.1:62899/

Create the ROS transformation tree using rostf. The function connects to the ROS parameter server
for the network. Get the transform between the '/camera_link' and '/base_link' coordinate
frames. These coordinate frame names are dependent on your robot configuration.

tftree = rostf;
pause(1);
tf = getTransform(tftree,'/camera_link','/base_link',rostime('now'));

Extract the rotation and translation matrices from the transform.

quat = [tf.Transform.Rotation.W,...
 tf.Transform.Rotation.X,...
 tf.Transform.Rotation.Y,...
 tf.Transform.Rotation.Z];
rotm = quat2rotm(quat);
trvec = [tf.Transform.Translation.X,...
 tf.Transform.Translation.Y ...
 tf.Transform.Translation.Z];

Create a homogeneous transform by combining the translation and rotation matrices.

tform = trvec2tform(trvec);
tform(1:3,1:3) = rotm(1:3,1:3);

Set up a subscriber to get laser scan data. Get the laser scan data as Cartesian points. Pad the points
with zeros for the z-axis and convert them to homogeneous coordinates.

scansub = rossubscriber('/scan');
scan = receive(scansub)

scan =
 ROS LaserScan message with properties:

 MessageType: 'sensor_msgs/LaserScan'
 Header: [1×1 Header]
 AngleMin: -0.5216
 AngleMax: 0.5243
 AngleIncrement: 0.0016
 TimeIncrement: 0
 ScanTime: 0.0330

 Transform Laser Scan Data From A ROS Network

3-11

 RangeMin: 0.4500
 RangeMax: 10
 Ranges: [640×1 single]
 Intensities: [0×1 single]

 Use showdetails to show the contents of the message

cartScanData = scan.readCartesian;
cartScanData(:,3) = 0;
homScanData = cart2hom(cartScanData);

Ensure that there is something within scanning distance of your robot. If nothing is detected, a laser
scan will contain only NaN values, resulting in an error from cart2hom.

Apply the homogeneous transform and convert scan data back to Cartesian points.

trPts = tform*homScanData';
cartScanDataTransformed = hom2cart(trPts');

Get the polar angles and ranges from the Cartesian Points.

[angles,ranges] = cart2pol(cartScanDataTransformed(:,1),...
 cartScanDataTransformed(:,2));

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_68056 with NodeURI http://192.168.233.1:62899/

3 ROS Topics

3-12

ROS Log Files (rosbags)
In this section...
“Introduction” on page 3-13
“MATLAB rosbag Structure” on page 3-13
“Workflow for rosbag Selection” on page 3-14
“Limitations” on page 3-16

Introduction
A rosbag or bag is a file format in ROS for storing ROS message data. These bags are often created
by subscribing to one or more ROS topics, and storing the received message data in an efficient file
structure. MATLAB® can read these rosbag files and help with filtering and extracting message data.
The following sections detail the structure of rosbags in MATLAB and the workflow for extracting
data from them.

MATLAB rosbag Structure
When accessing rosbag log files, call rosbag and specify the file path to the object. MATLAB then
creates a BagSelection object that contains an index of all the messages from the rosbag.

The BagSelection object has the following properties related to the rosbag:

• FilePath: a character vector of the absolute path to the rosbag file.
• StartTime: a scalar indicating the time the first message was recorded
• EndTime: a scalar indicating the time the last message was recorded
• NumMessages: a scalar indicating how many messages are contained in the file
• AvailableTopics: a list of what topic and message types were recorded in the bag. This is

stored as table data that lists the number of messages, message type, and message definition for
each topic. For more information on table data types, see “Access Data in Tables”. Here is an
example output of this table:

ans =

 NumMessages MessageType MessageDefinition
 ___________ ______________________ _________________

 /clock 12001 rosgraph_msgs/Clock [1x185 char]
 /gazebo/link_states 11999 gazebo_msgs/LinkStates [1x1247 char]
 /odom 11998 nav_msgs/Odometry [1x2918 char]
 /scan 965 sensor_msgs/LaserScan [1x2123 char]

• MessageList: a list of every message in the bag with rows sorted by time stamp of when the
message was recorded. This list can be indexed and you can select a portion of the list this way.
Calling select allows you to select subsets based on time stamp, topic or message type.

Also, note that the BagSelection object contains an index for all the messages. However, you must
still use functions to extract the data. For extracting this information, see readMessages for getting
messages based on indices as a cell array or see timeseries for reading the data of specified
properties as a time series.

 ROS Log Files (rosbags)

3-13

Workflow for rosbag Selection
When working with rosbags, there is a general procedure of how you should extract data.

• Load a rosbag: Call rosbag and the file path to load file and create BagSelection.
• Examine available messages: Examine BagSelection properties (AvailableTopics,

NumMessages, StartTime, EndTime, and MessageList) to determine how to select a subset of
messages for analysis.

• Select messages: Call select to create a selection of messages based on your desired
properties.

• Extract message data: Call readMessages or timeseries to get message data as either a cell
array or time series data structure.

• Visualize, analyze or process data: Use the extracted data for your specific application. You can
plot data or develop algorithms to process data.

The following figure also shows the workflow.

3 ROS Topics

3-14

 ROS Log Files (rosbags)

3-15

Limitations
There are a few limitations in the rosbag support within MATLAB:

• MATLAB can only parse uncompressed rosbags. See the ROS Wiki for a tool to decompress a
compressed rosbag.

• Only rosbags in the v2.0 format are supported. See the ROS Wiki for more information on different
bag formats

• The file path to the rosbag must always be accessible. Because the message selection process
does not retrieve any data, the file needs to be available for reading when the message data is
accessed.

See Also
BagSelection | readMessages | rosbag

Related Examples
• “Work with rosbag Logfiles” on page 1-45

3 ROS Topics

3-16

https://wiki.ros.org/rosbag/Commandline#decompress
https://wiki.ros.org/Bags/Format

Publish Variable-Length Nested ROS Messages in MATLAB
This example shows how to work with complex ROS messages in MATLAB, such as messages with
nested submessages and variable-length arrays.

Some ROS message types have nested submessages that are of different message types. Such nested
ROS messages can be arrays whose length (number of elements) cannot be predetermined. Typical
examples of such message types include:

• geometry_msgs/PoseArray : This message type contains an array of poses of type
geometry_msgs/Pose. It is typically used to send a bunch of waypoints to the robot in a specific
time step.

• nav_msgs/Path : This message type contains an array of poses of type geometry_msgs/
PoseStamped. It is typically used for the output of motion planners that send a path for the robot
to follow. The path is represented as a sequence of poses, each with its own header and
timestamp.

In this example, you send pose arrays of different lengths over a single topic that publishes messages
of type geometry_msgs/PoseArray.

Load and View Waypoints

Load the source data, which contains waypoints of different lengths that need to be published on a
single topic, for the robot to follow. The MAT file wayPointSets.mat loads two sets of waypoints.
These can be used to specify the pose array message. The waypoints are in the form of XYZ
coordinates.

load wayPointSets.mat;

Visualize the two sets of waypoints using the plot3 function. Note that the two sets contain different
numbers of waypoints.

figure
plot3(wayPointSet1(:,1),wayPointSet1(:,2),wayPointSet1(:,3),'*-')
grid on
xlabel('X')
ylabel('Y')
zlabel('Z')
title('Waypoint Set 1')

 Publish Variable-Length Nested ROS Messages in MATLAB

3-17

http://docs.ros.org/melodic/api/geometry_msgs/html/msg/PoseArray.html
http://docs.ros.org/melodic/api/nav_msgs/html/msg/Path.html

figure
plot3(wayPointSet2(:,1),wayPointSet2(:,2),wayPointSet2(:,3),'*-r')
grid on
xlabel('X')
ylabel('Y')
zlabel('Z')
title('Waypoint Set 2')

3 ROS Topics

3-18

Initialize and Configure ROS Network

Use rosinit to create a ROS master in MATLAB and start a global node that is connected to the
master.

rosinit

Launching ROS Core...
.Done in 1.6051 seconds.
Initializing ROS master on http://172.30.196.185:58811.
Initializing global node /matlab_global_node_34033 with NodeURI http://bat5125win64:64190/

Use rospublisher to create a ROS publisher for sending messages of type geometry_msgs/
PoseArray. Specify the name of the topic as /waypoints. Add a ROS subscriber that subscribes to
the published topic using rossubscriber.

pub = rospublisher('/waypoints','geometry_msgs/PoseArray');
sub = rossubscriber('/waypoints');

Use rosmessage to create an empty message based on the topic published by the publisher, pub.

poseArrayMsg = rosmessage(pub);

Populate Message and Publish

Specify the workspace variable corresponding to the waypoint set that you want to publish. Then,
populate the pose array with geometry_msgs/Pose messages. Assign the XYZ position fields of the

 Publish Variable-Length Nested ROS Messages in MATLAB

3-19

individual pose message elements from the waypoint set data. Continue adding new individual pose
message elements until the the pose array message contains all of the waypoint set data.

% Specify the waypoint set to publish
wayPointsToPublish = wayPointSet1;

% Populate the pose array message
for i = 1:size(wayPointsToPublish,1)
 poseMsg = rosmessage('geometry_msgs/Pose');
 poseMsg.Position.X = wayPointsToPublish(i,1);
 poseMsg.Position.Y = wayPointsToPublish(i,2);
 poseMsg.Position.Z = wayPointsToPublish(i,3);
 poseArrayMsg.Poses(i) = poseMsg;
end

Use the send function to publish the pose array message to the topic /waypoints, using the ROS
publisher object, pub.

send(pub,poseArrayMsg);
pause(0.5)

View the pose array message data, as received by the subscriber, using the LatestMessage property
of the Subscriber object. Use horzcat to concatenate the position information extracted from the
received message into a structure array for the purposes of visualization. Use plot3 to visualize the
waypoints as received by the subscriber. Note that the visualization matches that of the
corresponding source waypoint data set.

receivedPoseArrayMsg1 = sub.LatestMessage;
waypointPositions1 = horzcat(receivedPoseArrayMsg1.Poses.Position);

figure
plot3([waypointPositions1.X],[waypointPositions1.Y],[waypointPositions1.Z],'*-')
grid on
xlabel('X')
ylabel('Y')
zlabel('Z')
title('Waypoint Set 1 Received Through ROS Topic')

3 ROS Topics

3-20

Now publish the second waypoint using the same procedure. Populate the pose array message with
the new set of waypoint information.

% Specify the waypoint set to publish
wayPointsToPublish = wayPointSet2;

% Populate the Pose Array Message
for i = 1:size(wayPointsToPublish,1)
 poseMsg = rosmessage('geometry_msgs/Pose');
 poseMsg.Position.X = wayPointsToPublish(i,1);
 poseMsg.Position.Y = wayPointsToPublish(i,2);
 poseMsg.Position.Z = wayPointsToPublish(i,3);
 poseArrayMsg.Poses(i) = poseMsg;
end

Use the send function to publish the new pose array message to the same topic via the same ROS
publisher object, pub.

send(pub,poseArrayMsg);
pause(0.5)

Visualize the pose array message data received by the subscriber by following the same procedure as
before.

receivedPoseArrayMsg2 = sub.LatestMessage;
waypointPositions2 = vertcat(receivedPoseArrayMsg2.Poses.Position);

 Publish Variable-Length Nested ROS Messages in MATLAB

3-21

figure
plot3([waypointPositions2.X],[waypointPositions2.Y],[waypointPositions2.Z],'*-r')
grid on
xlabel('X')
ylabel('Y')
zlabel('Z')
title('Waypoint Set 2 Received Through ROS Topic')

The visualization matches that of the corresponding source waypoint data set, indicating the
successful broadcast of two sets of pose arrays with different lengths over a single topic. Use
rosshutdown to shut down the ROS network in MATLAB. Doing so, shuts down the ROS master
initialized by rosinit and deletes the global node. Using rosshutdown is the recommended
procedure once you are done working with the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_34033 with NodeURI http://bat5125win64:64190/
Shutting down ROS master on http://172.30.196.185:58811.

If the waypoint set data has orientation information, you can populate it in the quaternion orientation
fields of the individual pose message elements before publishing. To publish messages of type
nav_msgs/Path, use the same procedure, but specify the individual pose message elements as
geometry_msgs/PoseStamped type. To publish messages of any other type, specify the appropriate
nested message type as individual array elements, and ensure that the source data set contains the
required information you want to publish.

3 ROS Topics

3-22

See Also

Work with ROS Messages in Simulink

ROS Custom Message Support

 Publish Variable-Length Nested ROS Messages in MATLAB

3-23

https://www.mathworks.com/help/ros/ug/work-with-ros-messages-in-simulink.html?s_tid=srchtitle
https://www.mathworks.com/help/ros/ug/ros-custom-message-support.html

ROS Custom Message Support
In this section...
“Custom Message Overview” on page 3-24
“Custom Message Contents” on page 3-24
“Custom Message Creation Workflow” on page 3-25

Custom Message Overview
Custom messages are user-defined messages that you can use to extend the set of message types
currently supported in ROS Toolbox. If you are sending and receiving supported message types, you
do not need to use custom messages. To see a list of supported message types, call rosmsg list in
the MATLAB Command Window.

Custom message creation requires ROS packages, which are detailed in the ROS Wiki at Packages.
After ensuring that you have valid ROS packages for custom messages, call rosgenmsg with the file
path to your custom message package to generate the necessary MATLAB code to use custom
messages. For an example on how to generate a ROS custom message in MATLAB, see “Create
Custom Messages from ROS Package” on page 3-27.

If this is your first time using ROS custom messages, check “ROS System Requirements”.

Custom Message Contents
ROS custom messages are specified in ROS package folders that contains msg and srv directories.

Note At any time, there should only be one custom messages folder on the MATLAB path. This folder
can contain multiple packages. It is recommended that you keep them all in one unique folder.

The msg folder contains all your custom message type definitions. You should also add all custom
service type definitions to the srv folder. For example, the package custom_robot_msgs has this
folder and file structure.

The package contains one custom message type in RobotTopic.msg and one custom service type in
RobotService.srv. MATLAB uses these files to generate the necessary files for using the custom
messages contained in the package. For more information on creating msg and srv files, see Creating
a ROS msg and srv and Defining Custom Messages on the ROS Wiki. The syntax of these files is
described on the pages specific to msg and srv.

3 ROS Topics

3-24

https://wiki.ros.org/Packages
https://wiki.ros.org/ROS/Tutorials/CreatingMsgAndSrv
https://wiki.ros.org/ROS/Tutorials/CreatingMsgAndSrv
https://wiki.ros.org/ROS/Tutorials/DefiningCustomMessages
https://wiki.ros.org/msg
https://wiki.ros.org/srv

Note

• You must have write access to the custom messages folder.
• At any time, there should only be one custom messages folder on the MATLAB path. This folder

can contain multiple packages. It is recommended that you keep them all in one unique folder.
• ROS actions are not supported and will be ignored during the custom message generation.

Property Naming From Message Fields

When ROS message definitions are converted to MATLAB, the field names are converted to
properties for the message object. Object properties always begin with a capital letter and do not
contain underscores. The field names are modified to fit this naming convention. The first letter and
the first letter after underscores are capitalized with underscores removed. For example, the
sensor_msgs/Image message has these fields in ROS:

header
height
width
encoding
is_bigendian
step
data

The converted MATLAB properties are:

Header
Height
Width
Encoding
IsBigendian
Step
Data

This is also reflected when using ROS messages in Simulink®. ROS message buses use the same
properties names as MATLAB.

Custom Message Creation Workflow
Once you have your custom message structure set up as described in the previous section, you can
create the code needed to use these custom messages. First, you call rosgenmsg with your known
path to the custom message files to create MATLAB code.

The rosgenmsg function takes your custom message files (.msg and .srv) and converts each
message type to working MATLAB code. The rosgenmsg function looks for .msg files in the msg
folder and for .srv files in the srv folder. This code is a group of classes that define the message
properties when you create new custom messages. The function then creates the required MATLAB
M-files for the different message classes.

After the rosgenmsg function creates these files, you must add the class files to the MATLAB path.
These steps are given as prompts in the MATLAB Command Window.

1 Add location of class files to MATLAB path: Use addpath to add new locations of files with
the .m extension to the MATLAB path and use savepath to save these changes.

 ROS Custom Message Support

3-25

2 Refresh all message class definitions, which requires clearing the workspace:

clear classes
rehash toolboxcache

3 Verify messages are available: Use rosmsg list or the rosmessage function to check that
the new custom messages are available.

For an example of this procedure, see “Create Custom Messages from ROS Package” on page 3-27.
This example uses sample custom message files to create custom messages in MATLAB.

You need to complete this procedure only once for a specific set of custom messages. After that, you
can use the new custom messages like any other ROS message in MATLAB and take advantage of the
full ROS functionality that ROS Toolbox provides. Repeat this generation procedure when you would
like to update or create new message types.

You must maintain the MATLAB path that contain the files directories. Make sure that the MATLAB
path has only one folder at a time that contains custom message artifacts.

Code Generation with Custom messages

Custom message and service types can be used with ROS Simulink blocks for generating C++ code
for a standalone ROS node. The generated code (.tgz archive) will include Simulink definitions for
the custom messages, but it will not include the ROS custom message packages. When the generated
code is built in the destination Linux System, it expects the custom message packages to be available
in the catkin workspace or on the ROS_PACKAGE_PATH. Ensure that you either install or copy the
custom message package to your Linux system before building the generated code.

See Also
ros2genmsg | rosgenmsg

Related Examples
• “Create Custom Messages from ROS Package” on page 3-27
• “ROS 2 Custom Message Support” on page 2-39
• “ROS System Requirements”

3 ROS Topics

3-26

Create Custom Messages from ROS Package
In this example, you go through the procedure for creating ROS custom messages in MATLAB. You
must have a ROS package that contains the required msg and srv files. The correct file contents and
folder structure are described in “Custom Message Contents” on page 3-24. This folder structure
follows the standard ROS package conventions. Therefore, if you have any existing packages, they
should match this structure.

To ensure you have the proper third-party software, see “ROS System Requirements”.

After ensuring that your custom message package is correct, note the folder path location. Then, call
rosgenmsg with the specified path and follow the steps output in the command window. The
following example has three messages, A, B, and C, that have dependencies on each other. This
example also illustrates that you can use a folder containing multiple messages and generate them all
at the same time.

To set up custom messages in MATLAB:

• Open MATLAB in a new session
• Place your custom messages in a location and note the folder path. We recommend you put all

your custom message definitions in a single packages folder.

folderpath = 'c:\MATLAB\custom_msgs\packages';
• (Optional) If you have an existing catkin workspace (catkin_ws), you can specify the path to its

src folder instead. However, this workspace might contain a large number of packages and
message generation will be run for all of them.

folderpath = fullfile('catkin_ws','src');
• Specify the folder path for custom message files and call the rosgenmsg function to create

custom messages for MATLAB.

rosgenmsg(folderpath)

• Then, follow steps from the output of rosgenmsg.

1 Add the given files to the MATLAB path by running addpath and savepath in the command
window.

addpath('C:\MATLAB\custom_msgs\packages\matlab_msg_gen_ros1\msggen')
savepath

2 Refresh all message class definitions, which requires clearing the workspace:

clear classes

rehash toolboxcache
3 You can then use the custom messages like any other ROS messages supported in ROS Toolbox.

Verify these changes by either calling rosmsg list and search for your message types, or use
rosmessage to create a new message.

custommsg = rosmessage('B/Standalone')

 custommsg =

 ROS Standalone message with properties:

 Create Custom Messages from ROS Package

3-27

https://wiki.ros.org/Packages

 MessageType: 'B/Standalone'
 IntProperty: 0
 StringPropert: ''

 Use showdetails to show the contents of the message

This final verification shows that you have performed the custom message generation process
correctly. You can now send and receive these messages over a ROS network using MATLAB and
Simulink. The new custom messages can be used like normal message types. You should see them
create objects specific to their message type and be displayed in your workspace.

custommsg = rosmessage('B/Standalone');
custommsg2 = rosmessage('A/DependsOnB');

Custom messages can also be used with the ROS Simulink blocks.

See Also
ros2genmsg | rosgenmsg

3 ROS Topics

3-28

Related Examples
• “Create Custom Messages from ROS Package” on page 3-27
• “ROS 2 Custom Message Support” on page 2-39
• “ROS System Requirements”

 Create Custom Messages from ROS Package

3-29

ROS Actions Overview
In this section...
“Client to Server Relationship” on page 3-30
“Performing Actions Workflow” on page 3-30
“Action Messages and Functions” on page 3-32

Client to Server Relationship
ROS Actions have a client-to-server communication relationship with a specified protocol. The actions
use ROS topics to send goal messages from a client to the server. You can cancel goals using the
action client. After receiving a goal, the server processes it and can give information back to the
client. This information includes the status of the server, the state of the current goal, feedback on
that goal during operation, and finally a result message when the goal is complete.

Use the sendGoal function to send goals to the server. Send the goal and wait for it to complete
using sendGoalAndWait. This function enables you to return the result message, final state of the
goal and status of the server. While the server is executing a goal, the callback function,
FeedbackFcn, is called to provide data relevant to that goal (see SimpleActionClient). Cancel
the current goal using cancelGoal or all goals on server using cancelAllGoals.

Performing Actions Workflow
In general, the following steps occur when creating and executing a ROS action on a ROS network.

3 ROS Topics

3-30

• Setup ROS action server. Check what actions are available on a ROS network by typing
rosaction list in the MATLAB command window.

• Use rosactionclient to create action clients and connect them to the server. Specify an action
type currently available on the ROS network. Use waitForServer to wait for the action client to
connect to the server.

• Send a goal using sendGoal. Define a goalMsg that corresponds to the action type. When you
create an action client using rosactionclient, a blank goalMsg is returned. You can modify
this message with your desired parameters.

• When a goal status becomes 'active', the goal begins execution and the ActivationFcn
callback function is called. For more information on modifying this callback function, see
SimpleActionClient.

• While the goal status remains 'active', the server continues to execute the goal. The feedback
callback function processes information about this goals execution periodically whenever a new
feedback message is received. Use the FeedbackFcn to access or process the message data sent
from the ROS server.

• When the goal is achieved, the server returns a result message and status. Use the ResultFcn
callback to access or process the result message and status.

 ROS Actions Overview

3-31

Action Messages and Functions
ROS actions use ROS messages to send goals and receive feedback about their execution. In
MATLAB, you can use callback functions to access or process the feedback and result information
from these messages. After you create the SimpleActionClient object, specify the callback
functions by assigning function handles to the properties on the object. You can create the object
using rosactionclient.

• GoalMsg — The goal message contains information about the goal. To perform an action, you
must send a goal message with updated goal information (see sendGoal). The type of goal
message depends on the type of ROS action.

• ActivationFcn — Once a goal is received on the action server, its status goes to 'pending'
until the server decides to execute it. The status is then 'active'. At this moment, MATLAB
executes the callback function defined in the ActivationFcn property of the
SimpleActionClient object. There is no ROS message or data associated with this function. By
default, this function simply displays 'Goal is active' on the MATLAB command line to notify
you the goal is being executed.

The default function handle is:

@(~) disp('Goal is active')
• FeedbackFcn — The feedback function is used to process the information from the feedback

message. The type of feedback message depends on the action type. The feedback function
executes periodically during the goal operation whenever a new feedback message is received. By
default, the function displays the details of the message using showdetails. You can do other
processing on the feedback message in the feedback function.

The default function handle is:

@(~,msg) disp(['Feedback: ',showdetails(msg)])

msg is the feedback message as an input argument to the function you define.
• ResultFcn — The result function executes when the goal has been completed. Inputs to this

function include both the result message and the status of execution. The type of result message
depends on the action type. This message, msg, and status, s, are the same as the outputs you get
when using sendGoalAndWait. This function can also be used to trigger dependent processes
after a goal is completed.

The default function handle is:

@(~,s,msg) disp(['Result with state ',char(s),': ',showdetails(msg)])

See Also
rosaction | rosactionclient

Related Examples
• “Move a Turtlebot Robot Using ROS Actions” on page 3-33

3 ROS Topics

3-32

Move a Turtlebot Robot Using ROS Actions
This example shows how to use the /turtlebot_move action with a Turtlebot robot. The /
turtlebot_move action takes a location in the robot environment and attempts to move the robot to
that location.

Follow the steps in “Get Started with Gazebo and a Simulated TurtleBot” on page 1-129 to setup a
simulated TurtleBot. After starting the virtual machine, launch Gazebo Empty world using desktop
shortcut and open the terminal window.

To run the Turtlebot ROS action server, use this command on the ROS distribution terminal.

~/start-turtlebot-move-action-server.sh

Connect to a ROS network. You must have an ROS action server setup on this network. Change
ipaddress to the address of your ROS network.

ipaddress = '192.168.2.150';
rosinit(ipaddress,11311);

Initializing global node /matlab_global_node_94218 with NodeURI http://192.168.2.1:51650/

View the ROS actions available on the network. You should see /turtlebot_move available.

rosaction list

/turtlebot_move

Create a simple action client to connect to the action server. Specify the action name. goalMsg is the
goal message for you to specify goal parameters.

 Move a Turtlebot Robot Using ROS Actions

3-33

[client,goalMsg] = rosactionclient('/turtlebot_move');
waitForServer(client)

Set the parameters for the goal. The goalMsg contains properties for both the forward and turn
distances. Specify how far forward and what angle you would like the robot to turn. This example
moves the robot forward 2 meters.

goalMsg.ForwardDistance = 2;
goalMsg.TurnDistance = 0;

Set the feedback function to empty to have nothing output during the goal execution. Leave
FeedbackFcn as the default value to get a print out of the feedback information on the goal
execution.

client.FeedbackFcn = [];

Send the goal message to the server. Wait for it to execute and get the result message.

[resultMsg,~,~] = sendGoalAndWait(client,goalMsg)

resultMsg =
 ROS TurtlebotMoveResult message with properties:

 MessageType: 'turtlebot_actions/TurtlebotMoveResult'
 TurnDistance: 0
 ForwardDistance: 2.0022

 Use showdetails to show the contents of the message

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_94218 with NodeURI http://192.168.2.1:51650/

3 ROS Topics

3-34

Execute Code Based on ROS Time
Using a rosrate object allows you to control the rate of your code execution based on the ROS
Time /clock topic or system time on your computer. By executing code at constant intervals, you can
accurately time and schedule tasks. These examples show different applications for the rosrate
object including its uses with ROS image messages and sending commands for robot control.

For other applications based on system time, consider the rateControl object.

Send Fixed-rate Control Commands To A Robot
This example shows to send regular commands to a robot at a fixed rate. It uses the Rate object to
execute a loop that publishes std_msgs/Twist messages to the network at a regular interval.

Setup ROS network. Specify the IP address if your ROS network already exists.

rosinit

Launching ROS Core...
.Done in 1.6238 seconds.
Initializing ROS master on http://172.30.196.185:60586.
Initializing global node /matlab_global_node_98145 with NodeURI http://bat5125win64:53788/

Setup publisher and message for sending Twist commands.

[pub,msg] = rospublisher('/cmd_vel','geometry_msgs/Twist');
msg.Linear.X = 0.5;
msg.Angular.Z = -0.5;

Create Rate object with specified loop parameters.

desiredRate = 10;
rate = robotics.Rate(desiredRate);
rate.OverrunAction = 'drop'

rate =
 rateControl with properties:

 DesiredRate: 10
 DesiredPeriod: 0.1000
 OverrunAction: 'drop'
 TotalElapsedTime: 0.0453
 LastPeriod: NaN

Run loop and hold each iteration using waitfor(rate). Send the Twist message inside the loop.
Reset the Rate object before the loop to reset timing.

reset(rate)

while rate.TotalElapsedTime < 10
 send(pub,msg)
 waitfor(rate);
end

View statistics of fixed-rate execution. Look at AveragePeriod to verify the desired rate was
maintained.

 Execute Code Based on ROS Time

3-35

statistics(rate)

ans = struct with fields:
 Periods: [1x100 double]
 NumPeriods: 100
 AveragePeriod: 0.1000
 StandardDeviation: 4.2571e-04
 NumOverruns: 0

Shut down ROS network

rosshutdown

Shutting down global node /matlab_global_node_98145 with NodeURI http://bat5125win64:53788/
Shutting down ROS master on http://172.30.196.185:60586.

Fixed-rate Publishing of ROS Image Data
This example shows how to regularly publish and receive image messages using ROS and the
rosrate function. The rosrate function creates a Rate object to regularly access the /
camera/rgb/image_raw topic on the ROS network using a subscriber. The rgb image is converted
to a grayscale using rgb2gray and republished at a regular interval. Parameters such as the IP
address and topic names vary with your robot and setup.

Connect to ROS network. Setup subscriber, publisher, and data message.

ipaddress = '192.168.203.129'; % Replace with your network address
rosinit(ipaddress)

Initializing global node /matlab_global_node_10650 with NodeURI http://192.168.203.1:50899/

sub = rossubscriber('/camera/rgb/image_raw');
pub = rospublisher('/camera/gray/image_gray','sensor_msgs/Image');
msgGray = rosmessage('sensor_msgs/Image');
msgGray.Encoding = 'mono8';

Receive the first image message. Extract image and convert to a grayscale image. Display grayscale
image and publish the message.

msgImg = receive(sub);

img = readImage(msgImg);
grayImg = rgb2gray(img);
imshow(grayImg)

3 ROS Topics

3-36

writeImage(msgGray,grayImg)
send(pub,msgGray)

Create ROS Rate object to execute at 10 Hz. Set a loop time and the OverrunAction for handling

desiredRate = 10;
loopTime = 5;
overrunAction = 'slip';
rate = rosrate(desiredRate);
r.OverrunAction = overrunAction;

Begin loop to receive, process and send messages every 0.1 seconds (10 Hz). Reset the Rate object
before beginning.

reset(rate)

for i = 1:desiredRate*loopTime

 msgImg = receive(sub);

 img = readImage(msgImg);
 grayImg = rgb2gray(img);

 Execute Code Based on ROS Time

3-37

 writeImage(msgGray,grayImg)

 send(pub,msgGray)

 waitfor(rate);
end

View the statistics for the code execution. AveragePeriod and StandardDeviation show how well
the code maintained the desiredRate. OverRuns occur when data processing takes longer than the
desired period length.

statistics(rate)

ans = struct with fields:
 Periods: [1×50 double]
 NumPeriods: 50
 AveragePeriod: 0.1000
 StandardDeviation: 0.0083
 NumOverruns: 0

Shut down ROS node

rosshutdown

Shutting down global node /matlab_global_node_10650 with NodeURI http://192.168.203.1:50899/

See Also
rateControl | rosrate | waitfor

3 ROS Topics

3-38

ROS Simulink Topics

4

ROS Simulink Support and Limitations
In this section...
“ROS Model Reference” on page 4-2
“Remote Desktop” on page 4-2
“ROS 2 Model Build Failure” on page 4-2

The ROS Toolbox does not support the following ROS features in Simulink:

• ROS Service Servers
• ROS Actions
• Transformation trees

If your application requires these features, consider using MATLAB ROS functionality. You can write a
ROS node using MATLAB that can publish services, actions, and transformation trees to a topic as
ROS messages. Simulink can then subscribe to that topic to work with those messages. The following
functions are used in MATLAB to work with these features:

• ROS Service Servers: rosservice, rossvcserver
• ROS Actions: rosaction, rosactionclient
• Transformation trees: rostf, transform, getTransform

For ROS 2, Simulink only supports:

• Publish
• Subscribe

To see a full list of ROS support in Simulink, see “ROS in Simulink”.

ROS Model Reference
Simulink supports model reference when using ROS blocks with some limitations.

• Multiple references to the same model results in an error due to duplicate buses with the same
name being created for ROS messages used by the ROS blocks. You can only reference a model
once in a parent model.

• Referenced data dictionaries are not supported with variable-size ROS messages.
• Simulation Mode only supports Normal mode.

Remote Desktop
Running ROS networks from remote desktop applications can cause ROS communication to be
interrupted. Consider executing your network without a remote connection.

ROS 2 Model Build Failure
A space in the installation path of Python 3.7 causes an error related to the creation of a Python
virtual environment when generating code from a ROS 2 Simulink model. e.g. C:\Program Files
\Python37\python.exe

4 ROS Simulink Topics

4-2

See Also

Related Examples
• “ROS Parameters in Simulink” on page 4-12
• “ROS Simulink Interaction” on page 4-4
• “Manage Array Sizes for ROS Messages in Simulink” on page 4-27

 ROS Simulink Support and Limitations

4-3

ROS Simulink Interaction
In this section...
“MATLAB ROS Information” on page 4-4
“Simulink ROS Node” on page 4-4
“Differences Between Simulation and Generated Code” on page 4-4
“Publishers and Subscribers in Simulink” on page 4-5
“ROS Model Reference” on page 4-5

When using Simulink to communicate with a ROS network or work with ROS functionality, there are
several points to note regarding its interaction with MATLAB and the ROS network.

MATLAB ROS Information
Simulink uses the functionality built into MATLAB to communicate with the ROS network during
simulation. When trying to debug issues in Simulink, you can use MATLAB to view topics or messages
available on the ROS master. For more information on ROS topics and messages, see rosnode,
rostopic, or rosmsg.

By default, Simulink uses MATLAB ROS capabilities to resolve network information such as the
address of the ROS master. This network information can also be specified in Simulink using the
“Configure ROS Network Addresses” on page 4-21 dialog.

Simulink ROS Node
Each model is associated with a unique ROS node. At the start of each simulation, Simulink creates
the node and deletes it when the simulation is terminated. If multiple models are open and being
simulated, each model will get its own dedicated node, but all the nodes will connect to the same ROS
master. This is because all the models use the same ROS network address settings.

In simulation, the Simulink ROS node name is <modelName>_<random#>. This takes the model name
and adds a random number to the end to avoid node name conflicts.

In generated code, the node name is <modelName> (casing preserved). The model name is also used
in the archive used for generated code. Do not rename the tgz file from code generation (e.g.
ModelName.tgz). The file name is used to get the ROS package name and initiate the build.

Differences Between Simulation and Generated Code
In simulation, the model execution does not match real elapsed time. The blocks in the model are
evaluated in a loop that only simulates the progression of time, and whose speed depends on
complexity of the model and computer speed. It is not intended to track actual clock time.

In generated code, the model execution attempts to match actual elapsed time (the Fixed-step size
defines the actual time step, in seconds, that is used for the model update loop). However, this does
not guarantee real-time performance, as it is dependent on other processes running on the Linux
system and the complexity of the model. If the deployed model is too slow to meet the execution
frequency, tasks are dropped. This drop is called an "overrun" and the model waits for the next
scheduled task. For more information, see the Tasking Mode section in the “Generate a Standalone
ROS Node from Simulink®” on page 1-120 example.

4 ROS Simulink Topics

4-4

You can also modify how your generated code runs for a deployed ROS node using rosdevice. The
rosdevice object allows you to connect to a ROS device, run nodes that are deployed, and modify
files on the device.

Publishers and Subscribers in Simulink
All publishers and subscribers created using Publish and Subscribe blocks will connect with the ROS
node for that model. They are created during the model initialization and topic names are resolved at
the same time. The publishers and subscribers are deleted when the simulation is terminated.

NOTE: If a custom topic name is specified for a Subscribe block, the topic is not required to exist
when the model is initialized. The Subscribe block will output blank messages until it receives a
message on the topic name you specify. This allows you to setup and test models before the rest of the
network has been setup.

ROS Model Reference
Simulink supports model reference when using ROS blocks with one limitation. Multiple references to
the same model results in an error due to duplicate buses with the same name being created for ROS
messages used by the ROS blocks. You can only reference a model once in a parent model.

 ROS Simulink Interaction

4-5

Publish and Subscribe to ROS Messages in Simulink
This model shows how to publish and subscribe to a ROS topic using Simulink®.

open_system('rosPubSubExample.slx')

Use the Blank Message and Bus Assignment blocks to specify the X and Y values of a
'geometry_msgs/Point' message type. Open the Blank Message block mask to specify the
message type. Open the Bus Assignment block mask to select the signals you want to assign. Remove
any values with '???' from the right column. Supply the Bus Assignment block with relevant values
for X and Y.

Feed the Bus output to the Publish block. Open the block mask and choose Specify your own as
the topic source. Specify the topic, '/location', and message type, 'geoemetry_msgs/Point'.

Add a Subscribe block and specify the topic and message type. Feed the output Msg to a Bus Selector
and specify the selected signals in the block mask. Display the X and Y values.

Before running the model, call rosinit to connect to a ROS network.

4 ROS Simulink Topics

4-6

rosinit

Launching ROS Core...
..Done in 2.3932 seconds.
Initializing ROS master on http://172.30.196.185:49978.
Initializing global node /matlab_global_node_44209 with NodeURI http://bat5125win64:63702/

Run the model. You should see the xPosition Out and yPosition Out displays show the
corresponding values published to the ROS network.

sim('rosPubSubExample')

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_44209 with NodeURI http://bat5125win64:63702/
Shutting down ROS master on http://172.30.196.185:49978.

 Publish and Subscribe to ROS Messages in Simulink

4-7

Update Header Field of a ROS Message in Simulink®
This example illustrates how to update the header field of a ROS message using Simulink®.

Some ROS messages contain a specific Header field which maps to std_msgs/Header message type.
The Header field contains the timestamp and coordinate frame information of the ROS message. This
example model shows how to use the Header Assignment Block to update that information for a ROS
message, in Simulink®.

open_system('rosHeaderAssignmentBlockExampleModel.slx')

The Blank Message block creates an empty ROS message of type, sensor_msgs/LaserScan. Any
other message type that contains a Header field of type std_msgs/Header can be used here,
instead. The output of the Blank Message block is then fed to the Header Assignment block, which
updates the Header field of this message. For display, the frame_id and stamp values of the updated
ROS message Header are selected from the list of bus elements using Bus Selector blocks.
Additionally, a blank /rosgraph_msgs/Clock message is created and a custom time based on the
current simulation time is published to the /clock topic on the ROS network.

Update coordinate frame id and timestamp values in the Header

Open the Header Assignment block to display its block parameters. The Set Frame ID option is
selected and the name of the coordinate frame that is associated with the message is specified in the
text box as lidar_link. This will be set as the frame_id value for the Header. The Set Timestamp
option is also selected which sets the stamp value of the Header to the current ROS System time, by
default. The Header field name option is set to Use the default Header field name because,
the name of the Header field in a blank message is its default value, header. If you are using a ROS
message with a custom name for the Header field, you can select the Specify your own option
from the dropdown and specify the name of the Header field in the text box.

Before running the model, call rosinit to connect to a ROS network.

4 ROS Simulink Topics

4-8

rosinit

Launching ROS Core...
.Done in 1.6022 seconds.
Initializing ROS master on http://172.30.196.185:57257.
Initializing global node /matlab_global_node_93282 with NodeURI http://bat5125win64:52576/

Run the model. You should see the updated values for the frame_id and stamp fields of the ROS
Message in their respective displays.

sim('rosHeaderAssignmentBlockExampleModel')

Update timestamp value in the Header based on a custom clock

In some cases it is useful to set the timestamp of a ROS message based on the time published by a
clock server than the ROS System time. A clock server is a specialized ROS node that publishes
timestamp to /clock topic in the form of rosgraph_msgs/Clock message type. In order to enable
this behavior for the Header Assignment block, set the /use_sim_time ROS parameter to true.

rosparam set /use_sim_time true

This configures the Header Assignment block to look for /clock topic on the ROS Network and
update the timestamp of the ROS Message accordingly. If /clock topic is not being published, the
timestamp will be zeros. Since the Header Assignment block updates during every sample hit, the
accuracy of the timestamp always depends on the step-size of the solver. Smaller step-size values
result in more accurate timestamp values. Run the model. You should see the time in stamp field of
the ROS message based on the published /clock topic, not the current ROS System Time.

sim('rosHeaderAssignmentBlockExampleModel')

Shut down the ROS network.

rosshutdown

 Update Header Field of a ROS Message in Simulink®

4-9

Shutting down global node /matlab_global_node_93282 with NodeURI http://bat5125win64:52576/
Shutting down ROS master on http://172.30.196.185:57257.

4 ROS Simulink Topics

4-10

Time Stamp a ROS Message Using Current Time in Simulink
This example shows how to time stamp a ROS message with the current system time of your
computer. Use the Current Time block and assign the output to the std_msgs/Header message in
the Stamp field. Publish the message on a desired topic.

Connect to a ROS network.

rosinit

Launching ROS Core...
.Done in 1.109 seconds.
Initializing ROS master on http://172.30.196.185:52042.
Initializing global node /matlab_global_node_18286 with NodeURI http://bat5125win64:54393/

Open the Simulink model provided with this example. The model uses a Bus Assignment block to
add the Current Time output to the Stamp field of the ROS message.

open_system('current_time_stamp_message.slx')

Run the model. The Publish block should publish the Header message with the current system time.

sim('current_time_stamp_message.slx')

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_18286 with NodeURI http://bat5125win64:54393/
Shutting down ROS master on http://172.30.196.185:52042.

 Time Stamp a ROS Message Using Current Time in Simulink

4-11

ROS Parameters in Simulink
In this section...
“Get and Set ROS Parameters” on page 4-12
“Set String Parameter on ROS Network” on page 4-13
“Compare ROS String Parameters” on page 4-14
“Check Image Encoding Parameter for ROS Image Message” on page 4-15

These examples show how to get, set, compare, and manipulate ROS parameters in Simulink. To run
these examples, you must first set up a ROS network using rosinit. To set network-wide settings
and share values with the whole network, start a ROS parameter server using rosparam. Follow
these examples to see how to work with parameters in Simulink, including using string parameters.

Get and Set ROS Parameters
This model gets and sets ROS parameters using Simulink®. This example illustrates how to use ROS
parameters in Simulink and to share data over the ROS network. An integer value is set as a
parameter on the ROS network. This integer is retrieved from the parameter server and compared to
a constant. The output Boolean from the comparison is also set on the network. Change the constant
block in the top left (blue) when you run the model to set network parameters based on user input
conditions.

You must be connected to a ROS network. Call rosinit in the MATLAB® command line.

4 ROS Simulink Topics

4-12

Set String Parameter on ROS Network
To create your string parameter, use a String Constant block and convert it to uint8 using a MATLAB
function block. The converted uint8 string is passed into the Set Parameter block along with the extra
input, Length, specified with a second Constant block. The Length refers to the maximum expected
string length and is required for all string parameters. For more information, see the Set Parameter
block.

 ROS Parameters in Simulink

4-13

Compare ROS String Parameters
On ROS networks, strings parameters are stored as a uint8 array. When you get from string
parameters from the server, they are returned as a char array. In Simulink®, they are cast as uint8,
so you must use uint8 character vectors when comparing to the ROS string parameters. You can use
this comparison to trigger subsystems for larger models or validate settings for specific algorithms.

Connect to a ROS network. Set up the ROS Parameter tree.

rosinit

Launching ROS Core...
.Done in 1.6684 seconds.
Initializing ROS master on http://172.30.196.185:55842.
Initializing global node /matlab_global_node_04171 with NodeURI http://bat5125win64:50393/

ptree = rosparam;

Set a ROS parameter, /camera_format, to a string value. You can use string scalars or character
vectors. The value is stored as a uint8 array on the ROS parameter server and returned as 'jpeg'
in MATLAB®.

set(ptree,"/camera_format","jpeg")
pause(1)
pvalue = get(ptree,"/camera_format")

pvalue =
'jpeg'

Run the attached Simulink® model. This model checks to see if the previously set camera format
parameter is named 'jpeg'. To get the parameter off the server, use the Get Parameter block. Then,
compare the parameter to a character vector cast as uint8 from a Constant block, using a MATLAB
function block. An output of 1 means the parameters match.

open_system("rosStringParameterCompare")
sim("rosStringParameterCompare");

4 ROS Simulink Topics

4-14

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_04171 with NodeURI http://bat5125win64:50393/
Shutting down ROS master on http://172.30.196.185:55842.

The stringCompare function is defined as:

function y = stringCompare(str1,str2)
%#codegen
minLength = min(length(str1),length(str2));
st1 = str1(1:minLength);
st2 = str2(1:minLength);
y = all(st1(:)==st2(:));

Check Image Encoding Parameter for ROS Image Message
This model shows how to access string parameters and use them to trigger subsystem operations. It
gets an image format off the set up ROS parameter server. It is retrieved as a uint8 array that is
compared using the strcmp MATLAB function block. When a new image is received from the
Subscribe block and the format is uint8('jpeg'), it triggers the "Process Image" block to perform
a task on the image data.

Connect to a ROS network and set up the ROS parameter server.

rosinit

Launching ROS Core...
.Done in 1.638 seconds.
Initializing ROS master on http://172.30.196.185:55198.
Initializing global node /matlab_global_node_68752 with NodeURI http://bat5125win64:65417/

ptree = rosparam;

Set the "/camera/rgb/image_raw/compressed/format" parameter, and set up a publisher for
the "/camera/rgb/image_raw/compressed" topic.

set(ptree,"/camera/rgb/image_raw/compressed/format","jpeg")
pub = rospublisher("/camera/rgb/image_raw/compressed","sensor_msgs/CompressedImage");

 ROS Parameters in Simulink

4-15

Open the Simulink® model. This model checks the image format parameter and compares the value
to a uint8 cast character vector, uint8('jpeg') using a MATLAB® Function block. The boolean
output is fed to an AND operator with the IsNew output of a Subscribe block that gets the image off
the network. If the parameter value is correct and a new message is received, the Subsystem
"Process Image" is triggered.

Run the model and use the buttons in the model to change the image format parameter and verify the
strcmp function works. The eq output should be 1 when the parameter is set to 'jpeg'. While the
model is running, it is expected that image messages are being published on the network.

open_system("rosImageFormatParameter")

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_68752 with NodeURI http://bat5125win64:65417/
Shutting down ROS master on http://172.30.196.185:55198.

The strcmp function in the MATLAB® Function block is defined as:

function eq = strcmp(s1, n1, s2)
%#codegen

% Convert to proper strings
string1 = char(s1(1:n1));
string2 = char(s2);

eq = strcmp(string1, string2);

See Also
Get Parameter | Set Parameter

4 ROS Simulink Topics

4-16

Play Back Data from Jackal rosbag Logfile in Simulink
Use the Read Data block to play back data from a rosbag logfile recorded from a Jackal™ robot from
ClearPath™ Robotics.

Load the model.

open_system('read_jackal_pose_log.slx')

Open the Read Data block mask to load a rosbag logfile. Click the Load logfile data link. Browse for
the logfile and specify a time offset or limited duration if needed. The jackal_sim.bag file is
attached to this example.

Select the desired topic, /odometry/filtered, which contains nav_msgs/Odometry messages.
The Read Data block outputs the messages from the rosbag logfile. A bus selector extracts the xy-
position from the nav_msgs/Odometry messages

Run the model. The block plays back data in sync with the simulation time. The XY Graph plot
displays the robot position over time.

sim(gcs)

 Play Back Data from Jackal rosbag Logfile in Simulink

4-17

4 ROS Simulink Topics

4-18

Call ROS Service in Simulink
Use the Call Service block to call a service on the ROS service server.

Connect to a ROS network.

rosinit

Launching ROS Core...
.Done in 1.5844 seconds.
Initializing ROS master on http://172.30.196.185:56458.
Initializing global node /matlab_global_node_54169 with NodeURI http://bat5125win64:63355/

Set up a roscpp_tutorials/TwoInts service server message type and specify a example helper
callback function. The call back function provided sums the A and B elements of a
roscpp_tutorials/TwoIntsRequest message. The service server must be set up before you can
call a service client.

sumserver = rossvcserver('/sum','roscpp_tutorials/TwoInts',@exampleHelperROSSumCallback);

Open a Simulink® model with the Call Service block. Use the Blank Message block to output a
request message with the roscpp_tutorials/TwoIntsRequest message type. Populate the bus
with two values to sum together.

open_system('ros_twoint_service_simulink_example.slx')

Run the model. The service call should return 0 in the Resp output as part of the response message.
An error code of 0 indicates the service call was successful. You can ignore warnings about
converting data types.

sim('ros_twoint_service_simulink_example.slx')

Warning: The property "A" in ROS message type "roscpp_tutorials/TwoIntsRequest" has an unsupported datatype (int64). This property will be converted to datatype "double" in the Simulink bus.

Warning: The property "B" in ROS message type "roscpp_tutorials/TwoIntsRequest" has an unsupported datatype (int64). This property will be converted to datatype "double" in the Simulink bus.

Warning: The property "Sum" in ROS message type "roscpp_tutorials/TwoIntsResponse" has an unsupported datatype (int64). This property will be converted to datatype "double" in the Simulink bus.

Shut down the ROS network to disconnect.

rosshutdown

 Call ROS Service in Simulink

4-19

Shutting down global node /matlab_global_node_54169 with NodeURI http://bat5125win64:63355/
Shutting down ROS master on http://172.30.196.185:56458.

4 ROS Simulink Topics

4-20

Configure ROS Network Addresses
During model initialization, Simulink connects to a ROS master and also creates a node associated
with the model. The ROS master URI and Node Host are specified in the “Configure ROS Network
Addresses” dialog. You can access this in the Simulation tab by selecting ROS Toolbox > ROS
Network.

The Network Address parameter can be set to Default or Custom.

For the ROS master URI, if Network Address is set to Default, Simulink uses the following rules to
set the ROS Master URI:

• Use ROS_MASTER_URI environment variable if it is set.
• If a MATLAB global ROS node exists, use the Master URI associated with the global node. The

global node is created automatically when rosinit is called.
• Use address http://localhost:11311 if other two rules do not apply.

For the Node Host, if Network Address is set to Default, Simulink uses the following rules to set
the ROS Node Host:

 Configure ROS Network Addresses

4-21

• Use ROS_HOSTNAME environment variable if it is set.
• Use ROS_IP environment variable if it is set.
• Use hostname or IP address of the first network interface on the system if available.
• Use address http://localhost:11311 if other rules do not apply.

For both, these are the same rules that MATLAB uses to resolve its ROS network addresses.

Otherwise, if you chose Custom, you can set all the variables as shown below. This overrides the
environment variables.

Note: These addresses are saved in MATLAB preferences, not the model. Therefore, this information
is shared across all Simulink models and multiple MATLAB installs of the same release.

You can also use the Test button to ensure you can connect to the ROS master. If you get an error,
call rosinit to setup a local ROS network, or if you specified a remote ROS master, check your
settings are correct.

The custom ROS master or node host settings are not used in generated code when deploying a
standalone node.

4 ROS Simulink Topics

4-22

See Also
rosinit

Related Examples
• “Get Started with ROS” on page 1-2
• “Connect to a ROS-enabled Robot from Simulink®” on page 1-94

More About
• “ROS Simulink Interaction” on page 4-4
• “Select ROS Topics, Messages, and Parameters” on page 4-24
• “ROS Simulink Support and Limitations” on page 4-2

 Configure ROS Network Addresses

4-23

Select ROS Topics, Messages, and Parameters

In this section...
“Select ROS Topics” on page 4-24
“Select ROS Message Types” on page 4-25
“Select ROS Parameter Names” on page 4-25

Select ROS Topics
When using Simulink with ROS, you can publish or subscribe to topics on the ROS network. In the
dialog boxes for the Publish and Subscribe blocks, you can select from a list of topics on the ROS
network. You must be currently connected to a ROS network to get a list of topics. You can select a
topic using the following:

This dialog shows the list of topics available on the ROS master. Selecting a topic from the list
automatically populates the Topic and Message type parameters for the corresponding block mask
dialog. If the message type is not supported in MATLAB ROS, Simulink will throw an error. Once the
topic is selected, it is saved with the block. Even if the topic is not longer available on the network,
the block will still use that topic name.

To refresh the list, close and open the dialog again.

To use a topic not currently posted on the ROS network or if you are not currently connected, use the
“Specify your own” option under the Topic Source parameter in your block mask dialog.

4 ROS Simulink Topics

4-24

Select ROS Message Types
Simulink ROS allows you to select from a list of message types currently supported by MATLAB ROS
when setting the Message type for Publish, Subscribe, or Blank Message blocks.

This is the list of all message types supported in MATLAB ROS including any custom message types.
You can begin typing in the name of your desired message type or manually search through the list.

The selected message type is stored with the block and saved with the model.

Note: When using code generation, message type information is not included. You must ensure that
your Linux ROS environment has the ROS packages installed that contain the necessary message
type definitions.

Select ROS Parameter Names
When using the Get Parameter and Set Parameter blocks, you have the option of "Select from ROS
Network" in the block parameters, which gets a list of parameters currently on the server. When
clicking Select, you should see this dialog box.

 Select ROS Topics, Messages, and Parameters

4-25

This is the list of parameters you can select from the ROS parameter server. The parameters that are
grayed out have unsupported data types. Select a parameter name that is not grayed out and click
OK. This should auto-fill the Name and Data type into the block parameters.

See Also
Blank Message | Get Parameter | Publish | Set Parameter | Subscribe

Related Examples
• “ROS Parameters in Simulink” on page 4-12
• “Manage Array Sizes for ROS Messages in Simulink” on page 4-27

4 ROS Simulink Topics

4-26

Manage Array Sizes for ROS Messages in Simulink
A ROS message is represented as a bus signal. For more information on bus signals, see “Virtual Bus”
(Simulink).

If you are working with variable-length signals in Simulink, the non-virtual bus used for messages
cannot contain variable-length arrays as properties. All variable-length arrays are converted to fixed-
length arrays for non-virtual buses. Therefore, you must manage the maximum size for these fixed-
size arrays. In the Simulation tab, select ROS Toolbox > Variable Size Message to manage array
sizes. If your model uses ROS messages with variable-length arrays, the following dialog box opens.
Otherwise, Simulink displays a message.

Because the message properties have a variable length, it is possible that they can be truncated if
they exceed the maximum size set for that array. You have the option of Truncate with warning
or Truncate silently. Either way, the simulation will run, but Truncate with warning displays
a warning in the Diagnostic Viewer that the message property has been truncated. When using
generated code, the warning will be emitted using Log Statements in ROS. The warning will be a
ROS_WARN_NAMED log statement and the name is the model name.

The Message types in model section shows all the ROS message types that are currently used by
Publish, Subscribe and Blank Message blocks in your Simulink model. You have the option to use the
default limits for this message type by clicking the check box. Otherwise, select each message type
individually to set the Maximum length (items) of each Array Property as desired. This maximum
length is applied to all instances of that message type for that model. The maximum length is also
stored with the model. Therefore, it is possible to have two models accessing the same message type
with different maximum length limits.

 Manage Array Sizes for ROS Messages in Simulink

4-27

https://wiki.ros.org/roscpp/Overview/Logging

Managing the size of your variable-length arrays can help improve performance. If you limit the size
of the array to only include relevant data, you can process data more effectively. However, when
running these models, consider possible issues associated with truncation and what could happen to
your system if some data is ignored.

Note: If you would like to know the appropriate maximum lengths for different message types. You
can simulate the model and observe the sizes output in the warning. To see an example of using ROS
messages and working with variable-length arrays, see “Get Started with ROS in Simulink®” on page
1-78.

See Also
Publish | Subscribe

Related Examples
• “Get Started with ROS in Simulink®” on page 1-78
• “ROS Simulink Support and Limitations” on page 4-2

4 ROS Simulink Topics

4-28

Generate Code to Manually Deploy a ROS Node from Simulink
This example shows you how to generate C++ code from a Simulink model to deploy as a standalone
ROS node. The code is generated on your computer and must be manually transferred to the target
ROS device. No connection to the hardware is necessary for generated the code. For an automated
deployment of a ROS node, see “Generate a Standalone ROS Node from Simulink®” on page 1-120.

Prerequisites
• This example requires Simulink Coder™ and Embedded Coder™ .
• A Ubuntu Linux system with ROS is necessary for building and running the generated C++ code.

You can use your own Ubuntu ROS system, or you can use the Linux virtual machine used for ROS
Toolbox examples. See “Get Started with Gazebo and a Simulated TurtleBot” on page 1-129 for
instructions on how to install and use the virtual machine.

• Review the “Feedback Control of a ROS-Enabled Robot” on page 1-102 example, which details the
Simulink model that the code is being generated from.

Configure A Model for Code Generation
Configure a model to generate C++ code for a standalone ROS node using the Configuration
Parameters. The model used here is the proportional controller introduced in the “Feedback Control
of a ROS-Enabled Robot” on page 1-102 example.

Open the proportional controller model.

edit robotROSFeedbackControlExample

Copy the entire model to a new blank Simulink model.

Delete the Simulation Rate Control block.

On the Apps tab, under Control Systems, click Robot Operating System (ROS).

 Generate Code to Manually Deploy a ROS Node from Simulink

4-29

In the Robot Operating System (ROS) dialog box that opens up, select Robot Operating
System (ROS) from the ROS Network drop-down. This opens up the ROS tab in the toolstrip which
shows the specified ROS Network in the Connect section.

In the Prepare section under ROS tab, click Hardware Settings to open the model configuration
parameters dialog box.

The Hardware board settings section contains settings specific to the generated ROS package,
such as information included in the package.xml file. Change Maintainer name to ROS Example
User and click OK.

In the Solver pane of the Configuration Parameters dialog, ensure the Type is set to Fixed-step,
the Solver is set to ode3 (Bogacki-Shampine)and the Fixed-step size is set to 0.05. In
generated code, the fixed-step size defines the actual time step that is used for the model update
loop. See “Execution of Code Generated from a Model” (Simulink Coder) for more information.

In the Code Generation pane, ensure variable-size signals is enabled.

Click OK to close the Configuration Parameters dialog. Save the model as
RobotController.slx.

Configure the Build Options for Code Generation
After configuring the model, you must specify the build options for the target hardware and set the
folder or building the generated code.

Click Deploy under the ROS tab. Then under Deployment, click Build Model.This setting ensures
that code is generated for the ROS node without building it on an external ROS device.

Generate and Deploy the Code
Start a ROS master in MATLAB. This ROS master is used by Simulink for the code generation steps.

In the MATLAB command window type:

rosinit

Set the current folder to a writable directory. This folder is the location that generate code will be
stored when you build the model.

Under the C Code tab, click Generate Code or press Ctrl+B to start code generation for the model.

Once the build completes, two new files are written to your folder.

• RobotController.tgz–– An archive containing the C++ code
• build_ros_model.sh –– A shell script for extracting and building the C++ code

4 ROS Simulink Topics

4-30

Manually transfer the two files to the target machine. If you connect to a ROS device using
rosdevice, you can send files using putFile. Otherwise, this step assumes you are using the Linux
virtual machine used for Robotics System Toolbox™ examples. The virtual machine is configured to
accept SSH and SCP connections. If you are using your own Linux system, consult your system
administrator for a secure way to transfer files.

Ensure your host system (the system with your RobotController.tgz and build_ros_model.sh
files) has an SCP client. For Windows® systems, the next step assumes that PuTTY SCP client
(pcsp.exe) is installed.

Use SCP to transfer the files to the user home director on the Linux virtual machine. Username is
user and password is password. Replace <virtual_machine_ip> with your virtual machines IP
address.

• Windows host systems:

pscp.exe RobotController.tgz build_ros_model.sh user@<virtual_machine_ip>:

• Linux or macOS host systems:

scp RobotController.tgz build_ros_model.sh user@<virtual_machine_ip>:

The build_ros_model.sh file is not specific to this model. It only needs to be transferred once for
multiple models.

On the Linux system, execute the following commands to create a Catkin workspace. You may use an
existing Catkin workspace.

mkdir -p ~/catkin_ws_simulink/src
cd ~/catkin_ws_simulink/src
catkin_init_workspace

Decompress and build the node there using the following command in Linux. Replace
<path_to_catkin_ws> with the path to your catkin workspace.

cd ~
./build_ros_model.sh RobotController.tgz <path_to_catkin_ws>

If that does not work, ensure that build_ros_model.sh is set up as an executable by entering the
following command.

chmod +x build_ros_model.sh

The generated source code is under ~/catkin_ws_simulink/src/robotcontroller/. Review
the contents of the package.xml file. Verify that the node executable was created using:

file ~/catkin_ws_simulink/devel/lib/robotcontroller/robotcontroller_node

If the executable was created successfully, the command lists information about the file.

The model is now ready to be run as a standalone ROS node on your device.

Optional: You can then run the node using this command. Replace <path_to_catkin_ws> with the
path to your catkin workspace.

 Generate Code to Manually Deploy a ROS Node from Simulink

4-31

~/<path_to_catkin_workspace>/devel/lib/robotcontroller/robotcontroller_node

See Also

More About
• “Feedback Control of a ROS-Enabled Robot” on page 1-102
• “Generate a Standalone ROS Node from Simulink®” on page 1-120
• “Tune Parameters and View Signals on Deployed Robot Models Using External Mode” on page

4-33

4 ROS Simulink Topics

4-32

Tune Parameters and View Signals on Deployed Robot Models
Using External Mode

In this section...
“Set Up the Simulink Model” on page 4-33
“Deploy and Run the Model” on page 4-33
“Monitor Signals and Tune Parameters” on page 4-34

External mode enables Simulink models on your host computer to communicate with a deployed
model on your robot hardware during runtime. Use external mode to view signals or modify block
mask parameters on your deployed Simulink model. Parameter tuning with external mode helps you
make adjustments to your algorithms as they run on the hardware as opposed to in simulation in
Simulink itself. This example shows how to use external mode with the “Feedback Control of a ROS-
Enabled Robot” on page 1-102 example when the model is deployed to the robot hardware.

Set Up the Simulink Model
Configure the Simulink model to deploy to the robot hardware and enable external mode.

Open the model.

robotROSFeedbackControlExample

Set the configuration parameters of the model.

1 In the Prepare section under ROS tab, click Hardware Settings to open the model
configuration parameters dialog box.

2 On the Solver pane, set Type to Fixed-step and the Fixed-step size to 0.05.
3 In Target Hardware Resources, set the External mode parameters. To prioritize model

execution speed, enable Run external mode in a background thread. Click OK.
4 Click Deploy under the ROS tab. Then under Deployment, click Build & Run. By default,

Simulink always uses Build and run when using external mode.
5 In the model, set the Simulation mode to External.

In the model, add scope blocks to the signals you want to view. For this example, add an XY Graph
scope to the X and Y signals that are exiting the Bus Selector from the ROS subscriber that monitors
the robot position. Open the XY Graph block and change the minimum and maximum values for each
axis to [-10 10].

Deploy and Run the Model
Now that the model is configured, you can deploy and run the model on the robot hardware.

Connect to the ROS network by setting the network address. The network must be running on your
target robotics hardware. This example uses the "Gazebo Empty" simulator environment is used from
the Virtual Machine with ROS Hydro and Gazebo example. In the Simulations tab select ROS
Network to configure your ROS network address. Specify your device address by selecting Custom
under Network Address and specifying the IP address or host name under Hostname/IP Address.
For this virtual machine, the IP address is 192.168.154.131.

 Tune Parameters and View Signals on Deployed Robot Models Using External Mode

4-33

https://www.mathworks.com/supportfiles/robotics/ros/virtual_machines/v3/installation_instructions.htm

Run the model. The model is deployed to the robot hardware and runs after the build process is
complete. This step might take some time.

Monitor Signals and Tune Parameters
After you deploy the model and the model is running, you can view its signals and modify its
parameters.

While the model runs on the hardware, view the XY Graph window to monitor the robot position over
time.

The path has a slight wobble, which is due to the high velocity of the robot as it tracks the path.

While the model is still running, you can also tune parameters. Open the Proportional
Controller subsystem and change the Linear Velocity slider to 0.25. Back in the main model,
change the Desired Position constant block to a new position, [0 -5]. The robot drives to the new
position slower.

4 ROS Simulink Topics

4-34

The lowered velocity reduces the wobble along the path. All these modifications were done while the
model was deployed on the hardware.

See Also

Related Examples
• “Feedback Control of a ROS-Enabled Robot” on page 1-102
• “Enable External Mode for ROS Toolbox Models” on page 4-38
• “Generate a Standalone ROS Node from Simulink®” on page 1-120

 Tune Parameters and View Signals on Deployed Robot Models Using External Mode

4-35

Connect to ROS Device
When connecting to a ROS device, deploying a ROS node to a ROS device, or trying to start and stop
nodes on a ROS device, you must specify the login credentials. The Connect to a ROS Device
dialog requests the following information to connect to the ROS device.

• Device Address — Specify the host name or IP address for the target ROS device.
• Username — Specify the user name that is used to log into the target ROS device.
• Password — Specify the password that is used to log into the target ROS device with the specified

user name.
• Remember my password — Select this parameter for your password to be saved for all MATLAB

sessions. If this parameter is not selected, MATLAB prompts for your password whenever a
connection to the ROS device is established.

• ROS folder — Specify the location of the ROS installation folder on the ROS device. For
example: /opt/ros/indigo

• Catkin workspace — Specify the location of the Catkin workspace folder on the ROS device. For
example: ~/catkin_ws_test

By clicking the Test button, you can verify your settings. The results of the test are displayed in the
Simulink Diagnostic Viewer. Use the Diagnostic Viewer to troubleshoot any issues with connecting to
your ROS device. For more information, see “View Diagnostics” (Simulink).

See Also

Related Examples
• “Generate a Standalone ROS Node from Simulink®” on page 1-120

4 ROS Simulink Topics

4-36

Enable ROS Time Model Stepping for Deployed ROS Nodes
You can enable a deployed ROS node to execute based on the time published on the /clock topic on
a ROS network. To deploy a ROS node from Simulink, see “Generate a Standalone ROS Node from
Simulink®” on page 1-120.

When you enable ROS time model stepping, the deployed ROS node executes when the published
ROS time is a multiple of the base rate of the model. To enable model stepping based on ROS time:

1 On the Apps tab, under Control Systems, click Robot Operating System (ROS).
2 In the Robot Operating System (ROS) dialog box that opens up, select Robot Operating

System (ROS) from the ROS Network drop-down. This opens up the ROS tab in the toolstrip
which shows the specified ROS Network in the Connect section.

3 In the Prepare section under ROS tab, click Hardware Settings to open the model
configuration parameters dialog box. Under Target Hardware resources > ROS time, select
Enable ROS time model stepping.

To specify a topic to publish a notification when the model executes, check the Enable notification
after step check box, and use the Notification topic (default is /step_notify). Subscribe to the
topic to get a message every time ROS time is published. The ROS node publishes a std_msgs/
String message type with a string containing a '+' or '-' and the model name (+rostime_test,
for example). A '+' indicates the model was stepped. A '-' indicates the published ROS time was
not a multiple of the base rate of the model.

After enabling model stepping and setting a notification topic, you can re-build and deploy your
model. When starting the ROS node, the model waits for the ROS time to be published.

You can also enable overrun detection if the model execution is still processing when the next step is
triggered by the ROS time. For more information, see “Overrun Detection with Deployed ROS Nodes”
on page 4-39.

See Also
Current Time | Subscribe

Related Examples
• “Generate a Standalone ROS Node from Simulink®” on page 1-120
• “Overrun Detection with Deployed ROS Nodes” on page 4-39
• “Get Started with ROS in Simulink®” on page 1-78
• “Exchange Data with ROS Publishers and Subscribers” on page 1-25

 Enable ROS Time Model Stepping for Deployed ROS Nodes

4-37

Enable External Mode for ROS Toolbox Models
External mode enables Simulink on your host computer to communicate with a deployed model on
your robotics hardware during runtime. External mode allows you to tune block mask parameters and
to visualize signals on your model while your model is running. For ROS Toolbox, deployed models are
ROS nodes running on the target hardware that communicates with Simulink over TCP/IP.

To use external mode with ROS Toolbox models:

1 On the Apps tab, under Control Systems, click Robot Operating System (ROS).
2 In the Robot Operating System (ROS) dialog box that opens up, select Robot Operating

System (ROS) from the ROS Network drop-down. This opens up the ROS tab in the toolstrip
which shows the specified ROS Network in the Connect section.

3 In the Connect section, specify Deploy To option as Remote Device, from the drop-down. To
configure the remote device details such as IP address and user details, select Manage Remote
Device from the drop-down.

4 In the Prepare section, click Hardware Settings to open the model configuration parameters
dialog box. In Target Hardware Resources, set the External mode parameters. Click OK.

5 In the model, set the Simulation mode to External for the model.
6 Run the model.

Your model connects to the Device Address specified in the “Connect to ROS Device” on page 4-36
dialog box which is used to connect to your ROS device when deploying the model.

To configure signal monitoring and data archiving, go to the Apps tab and select External Mode
Control Panel. You can also connect to the target program and start and stop execution of the model
code. For more information, see “External Mode Simulations for Parameter Tuning and Signal
Monitoring” (Simulink Coder).

See Also

Related Examples
• “Generate a Standalone ROS Node from Simulink®” on page 1-120
• “Tune Parameters and View Signals on Deployed Robot Models Using External Mode” on page

4-33
• “External Mode Simulations for Parameter Tuning and Signal Monitoring” (Simulink Coder)

4 ROS Simulink Topics

4-38

Overrun Detection with Deployed ROS Nodes
You can enable overrun detection for a deployed ROS node. To deploy a ROS node from Simulink, see
“Generate a Standalone ROS Node from Simulink®” on page 1-120.

An overrun occurs when the deployed Simulink model is still processing the last step, but the next
step is requested.

When you enable overrun detection, the deployed ROS node notifies the user through the ROS_ERROR
logging mechanism (see ROS Logging). The error is output to the ROS console command line. To
enable overrun detection on ROS time:

1 On the Apps tab, under Control Systems, click Robot Operating System (ROS).
2 In the Robot Operating System (ROS) dialog box that opens up, select Robot Operating

System (ROS) from the ROS Network drop-down. This opens up the ROS tab in the toolstrip
which shows the specified ROS Network in the Connect section.

3 In the Prepare section under ROS tab, click Hardware Settings to open the model
configuration parameters dialog box. Under Hardware board settings > Operating system/
scheduler settings > Operating system options, select Detect task overruns.

After enabling Detect task overruns, you can re-build and deploy your model. When starting the
ROS node, the model waits for the ROS time to be published. When an overrun is detected, an error
is output to the ROS console command line, recorded in the log file, and published via /rosout. A
typical error is:

[ERROR [1518780859.389633256, 214281.990000000]: !!! Overrun 1 !!!

The model continues executing when the previous step finishes, and waits for the next time step.

When an overrun condition occurs, you can correct it using one of the following approaches:

• Simplify the model
• Increase the sample times for the model and the blocks in it. For example, change the Sample

time parameter in all of your data source blocks from 0.1 to 0.2.

See Also
Current Time | Subscribe

Related Examples
• “Generate a Standalone ROS Node from Simulink®” on page 1-120
• “Enable ROS Time Model Stepping for Deployed ROS Nodes” on page 4-37
• “Get Started with ROS in Simulink®” on page 1-78
• “Exchange Data with ROS Publishers and Subscribers” on page 1-25

 Overrun Detection with Deployed ROS Nodes

4-39

https://wiki.ros.org/roscpp/Overview/Logging

Convert a ROS Pose Message to a Homogeneous
Transformation

This model subscribes to a Pose message on the ROS network and converts it to a homogeneous
transformation. Use bus selectors to extract the rotation and translation vectors. The Coordinate
Transformation Conversion block takes the rotation vector (euler angles) and translation vector in
and gives the homogeneous transformation for the message.

Connect to a ROS network. Create a publisher for the '/pose' topic using a 'geometry_msgs/
Pose' message type.

rosinit

Launching ROS Core...
.Done in 1.6108 seconds.
Initializing ROS master on http://172.30.196.185:56128.
Initializing global node /matlab_global_node_33334 with NodeURI http://bat5125win64:53479/

[pub,msg] = rospublisher('/pose','geometry_msgs/Pose');

Specify the detailed pose information. The message contains a translation (Position) and
quaternion (Orientation) to express the pose. Send the message via the publisher.

msg.Position.X = 1;
msg.Position.Y = 2;
msg.Position.Z = 3;
msg.Orientation.X = sqrt(2)/2;
msg.Orientation.Y = sqrt(2)/2;
msg.Orientation.Z = 0;
msg.Orientation.W = 0;

send(pub,msg)

Open the 'pose_to_transformation_model' model. This model subscribes to the '/pose' topic
in ROS. The bus selectors extract the quaternion and position vectors from the ROS message. The
Coordinate Transformation Conversion block then converts the position (translation) and quaternion
to a homogeneous transformation.

For more details, inspect the bus selector in the model to see how the message information is
extracted.

open_system('pose_to_transformation_model.slx')

Run the model to display the homogeneous transformation.

4 ROS Simulink Topics

4-40

Modify the position or orientation components of the message. Resend the message and run model to
see the change in the homogeneous transformation.

msg.Position.X = 4;
msg.Position.Y = 5;
msg.Position.Z = 6;
send(pub,msg)

Shutdown the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_33334 with NodeURI http://bat5125win64:53479/
Shutting down ROS master on http://172.30.196.185:56128.

 Convert a ROS Pose Message to a Homogeneous Transformation

4-41

Read A ROS Point Cloud Message In Simulink®
Read in a point cloud message from a ROS network. Calculate the center of mass of the coordinates
and display the point cloud as an image.

This example requires Computer Vision Toolbox® and Robotics System Toolbox®.

Start a ROS network.

rosinit

Initializing ROS master on http://ah-rhosea:11311/.
Initializing global node /matlab_global_node_07639 with NodeURI http://ah-rhosea:51851/

Load sample messages to send including a sample point cloud message, ptcloud. Create a publisher
to send an ROS PointCloud2 message on the '/ptcloud_test' topic. Specify the message type as
'sensor_msgs/PointCloud2'. Send the point cloud message.

exampleHelperROSLoadPCloud
pub = rospublisher('/ptcloud_test','sensor_msgs/PointCloud2');
send(pub,ptcloud)

Open the Simulink® model for subscribing to the ROS message and reading in the point cloud from
the ROS.

Ensure that the Subscribe block is subscribing to the '/ptcloud_test' topic. Under the
Simulation tab, select ROS Toolbox > Variable Size Arrays and verify the Data array has a
maximum length greater than the sample image (9,830,400 points).

The model only displays the RGB values of the point cloud as an image. The XYZ output is used to
calculate the center of mass (mean) of the coordinates using a MATLAB Function block. All NaN
values are ignored.

open_system('read_point_cloud_example_model.slx')

4 ROS Simulink Topics

4-42

Run the model. The Video Viewer shows the sample point cloud as an image. The output center of
mass is [-0.2869 -0.0805 2.232] for this point cloud.

 Read A ROS Point Cloud Message In Simulink®

4-43

Stop the simulation and shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_07639 with NodeURI http://ah-rhosea:51851/
Shutting down ROS master on http://ah-rhosea:11311/.

The pointCloudCOM function block contains the following code for calculating the center of mass of
the coordinates.

function comXYZ = pointCloudCOM(xyzPoints)
% Compute the center of mass of a point cloud based on the input NxMx3
% matrix.

% Turn matrix into vectors.
xPoints = reshape(xyzPoints(:,:,1),numel(xyzPoints(:,:,1)),1);
yPoints = reshape(xyzPoints(:,:,2),numel(xyzPoints(:,:,2)),1);
zPoints = reshape(xyzPoints(:,:,3),numel(xyzPoints(:,:,3)),1);

4 ROS Simulink Topics

4-44

% Calculate the mean for each set of coordinates.
xMean = mean(xPoints,'omitnan');
yMean = mean(yPoints,'omitnan');
zMean = mean(zPoints,'omitnan');

comXYZ = [xMean,yMean,zMean];

end

 Read A ROS Point Cloud Message In Simulink®

4-45

Read A ROS Image Message In Simulink®
This example requires Computer Vision Toolbox® and Robotics System Toolbox®.

Start a ROS network.

rosinit

Initializing ROS master on http://ah-rhosea:11311/.
Initializing global node /matlab_global_node_45601 with NodeURI http://ah-rhosea:49292/

Load sample messages to send including a sample image message, img. Create a publisher to send a
ROS Image message on the '/image_test' topic. Specify the message type as '/sensor_msgs/
Image'. Send the image message.

imgcell = load('imgdata.mat','img');
img = imgcell.img;
pub = rospublisher('/image_test','sensor_msgs/Image');
send(pub,img)

Open the Simulink® model for subscribing to the ROS message and reading in the image from the
ROS.

Ensure that the Subscribe block is subscribing to the '/image_test' topic. In the menu under
Tools > Robot Operating System > Manage Array Lengths, verify the Data array has a
maximum length greater than the sample image (921,600 pixels).

open_system('read_image_example_model.slx')

4 ROS Simulink Topics

4-46

Run the model. The Video Viewer shows the sample image.

 Read A ROS Image Message In Simulink®

4-47

Stop the simulation and shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_45601 with NodeURI http://ah-rhosea:49292/
Shutting down ROS master on http://ah-rhosea:11311/.

4 ROS Simulink Topics

4-48

	ROS Featured Examples
	Get Started with ROS
	Connect to a ROS Network
	Access the ROS Parameter Server
	Work with Basic ROS Messages
	Exchange Data with ROS Publishers and Subscribers
	Improve Performance of ROS Using Message Structures
	Call and Provide ROS Services
	Work with rosbag Logfiles
	Access the tf Transformation Tree in ROS
	Work with Specialized ROS Messages
	Work with Velodyne ROS Messages
	Get Started with a Real TurtleBot
	Get Started with ROS in Simulink®
	Work with ROS Messages in Simulink®
	Connect to a ROS-enabled Robot from Simulink®
	Feedback Control of a ROS-Enabled Robot
	Fusion of Radar and Lidar Data Using ROS
	MATLAB Programming for Code Generation
	Generate a Standalone ROS Node from MATLAB®
	Generate a Standalone ROS Node from Simulink®
	Get Started with Gazebo and a Simulated TurtleBot
	Add, Build, and Remove Objects in Gazebo
	Apply Forces and Torques in Gazebo
	Test Robot Autonomy in Simulation
	Communicate with the TurtleBot
	Explore Basic Behavior of the TurtleBot
	Control the TurtleBot with Teleoperation
	Obstacle Avoidance with TurtleBot and VFH
	Track and Follow an Object

	ROS 2 Featured Examples
	Get Started with ROS 2
	Connect to a ROS 2 Network
	Work with Basic ROS 2 Messages
	Exchange Data with ROS 2 Publishers and Subscribers
	Manage Quality of Service Policies in ROS 2
	Manage Quality of Service Policies in ROS 2 Application with TurtleBot
	ROS 2 Custom Message Support
	Using ROS Bridge to Establish Communication Between ROS and ROS 2
	Get Started with ROS 2 in Simulink®
	Connect to a ROS-Enabled Robot from Simulink® over ROS 2
	Feedback Control of a ROS-Enabled Robot Over ROS 2
	Publish and Subscribe to ROS 2 Messages in Simulink
	Generate a Standalone ROS 2 Node from Simulink®
	Generate Code to Manually Deploy a ROS 2 Node from Simulink®
	Sign Following Robot with ROS in MATLAB
	Sign Following Robot with ROS in Simulink
	Sign Following Robot with ROS 2 in MATLAB
	Sign Following Robot with ROS 2 in Simulink
	Automated Parking Valet with ROS in MATLAB
	Automated Parking Valet with ROS in Simulink
	Automated Parking Valet with ROS 2 in MATLAB
	Automated Parking Valet with ROS 2 in Simulink

	ROS Topics
	ROS Network Setup
	Introduction
	Network Connection Layout

	Built-In Message Support
	ROS Message Structure
	Limitations of ROS Messages in MATLAB
	ROS Data Type Conversions
	Supported Messages

	Transform Laser Scan Data From A ROS Network
	ROS Log Files (rosbags)
	Introduction
	MATLAB rosbag Structure
	Workflow for rosbag Selection
	Limitations

	Publish Variable-Length Nested ROS Messages in MATLAB
	ROS Custom Message Support
	Custom Message Overview
	Custom Message Contents
	Custom Message Creation Workflow

	Create Custom Messages from ROS Package
	ROS Actions Overview
	Client to Server Relationship
	Performing Actions Workflow
	Action Messages and Functions

	Move a Turtlebot Robot Using ROS Actions
	Execute Code Based on ROS Time
	Send Fixed-rate Control Commands To A Robot
	Fixed-rate Publishing of ROS Image Data

	ROS Simulink Topics
	ROS Simulink Support and Limitations
	ROS Model Reference
	Remote Desktop
	ROS 2 Model Build Failure

	ROS Simulink Interaction
	MATLAB ROS Information
	Simulink ROS Node
	Differences Between Simulation and Generated Code
	Publishers and Subscribers in Simulink
	ROS Model Reference

	Publish and Subscribe to ROS Messages in Simulink
	Update Header Field of a ROS Message in Simulink®
	Time Stamp a ROS Message Using Current Time in Simulink
	ROS Parameters in Simulink
	Get and Set ROS Parameters
	Set String Parameter on ROS Network
	Compare ROS String Parameters
	Check Image Encoding Parameter for ROS Image Message

	Play Back Data from Jackal rosbag Logfile in Simulink
	Call ROS Service in Simulink
	Configure ROS Network Addresses
	Select ROS Topics, Messages, and Parameters
	Select ROS Topics
	Select ROS Message Types
	Select ROS Parameter Names

	Manage Array Sizes for ROS Messages in Simulink
	Generate Code to Manually Deploy a ROS Node from Simulink
	Prerequisites
	Configure A Model for Code Generation
	Configure the Build Options for Code Generation
	Generate and Deploy the Code

	Tune Parameters and View Signals on Deployed Robot Models Using External Mode
	Set Up the Simulink Model
	Deploy and Run the Model
	Monitor Signals and Tune Parameters

	Connect to ROS Device
	Enable ROS Time Model Stepping for Deployed ROS Nodes
	Enable External Mode for ROS Toolbox Models
	Overrun Detection with Deployed ROS Nodes
	Convert a ROS Pose Message to a Homogeneous Transformation
	Read A ROS Point Cloud Message In Simulink®
	Read A ROS Image Message In Simulink®

